Supplementary Data

This document contains Supplementary Material associated with the paper "**RKR1**: A Computer Program Implementing the First-Order RKR Method for Determining Diatomic Molecule Potential Energy Functions", submitted to the *Journal of Quantitative Spectroscopy and Radiative Transfer* in January 2016. It consists of the five Appendices enumerated below. Note that Equation and Reference numbering appearing herein refer to the equation and reference numbering in the Journal Article.

Appendix	А.	Structure of the Input Data Filep.2.
Appendix	В.	Definitions and Descriptions of the Input File Data pp. 3–5.
Appendix	С.	Illustrative Sample Data Files and Commentary pp. 5–18.
C.1	Stan	dard Dunham Representation Applications pp. 6-10.
C.2	Pure	e NDE G_v and B_v Function Applications pp. 11-13.
C.3	No I	Rotational Data: use a Morse Inner Wall pp. 14.
C.4	Pure	e NDE G_v and B_v Function Applications pp. 15-18.
Appendix	D.	Derivation of the RKR Equations pp. 19–21.

Appendix A. Structure of the Input Data File

The logical structure and read statements that define the Channel–5 input data file describing the system to be treated and provide all necessary system-specific parameters are shown below. Appendix B then provides a detailed description of the nature of and/or options associated with each of the input variables.

```
#1
       READ(5,*,END=99) IAN1, IMN1, IAN2, IMN2, CHARGE, NDEGv, NDEBv
#2a
       IF((IAN1.LE.O).OR.(IAN1.GT.109) READ(5,*) NAME1, MASS1
       IF((IAN2.LE.O).OR.(IAN2.GT.109) READ(5,*) NAME2, MASS2
#2b
       READ(5,*) TITLE
#3
       IF((NDEGv.EQ.0).OR.(NDEGv.EQ.2)) THEN
#4
           READ(5,*) LMAXGv
           READ(5,*) (YLO(L),L= 1,LMAXGv)
#5
           ENDIF
#6
       IF(NDEGv.GE.2) READ(5,*) VS, DVS, DLIM
       IF(NDEGv.GE.1) THEN
#7
           READ(5,*) NLR, ITYPE, IZPO, IZQO, NPO, NQO, VD, XCNO
           IF(NPO.GT.0) READ(5,*) (PO(I), I= 1, NPO)
#8
#9
           IF(NQ0.GT.0) READ(5,*) (Q0(I),I= 1,NQ0)
           ENDIF
#10
       IF(NDEBv.LT.0) READ(5,*) Req
       IF((NDEBv.EQ.O).OR.(NDEBv.EQ.2)) THEN
#11
           READ(5,*) LMAXBv
           IF(LMAXBv.GE.0) READ(5,*) (YL1(L),L= 0,LMAXBv)
#12
           ENDIF
       IF(NDEBv.GE.1) THEN
           READ(5,*) ITYPB, IZP1, IZQ1, NP1, NQ1, XCN1
#13
           IF(NP1.GT.0) READ(5,*) (P1(I), I= 1, NP1)
#14
           IF(NQ1.GT.0) READ(5,*) (Q1(I),I= 1,NP1)
#15
           ENDIF
#16
       READ(5,*) Kaiser, NSV, VEXT
       DO J= 1,NSV
#17
           READ(5,*) V1(I), DV(I), V2(I)
           ENDDO
```

Appendix B. Definitions and Descriptions of the Input File Data

Read integers identifying the molecule or system.

- #1. READ(5,*) IAN1, IMN1, IAN2, IMN2, CHARGE, NDEGv, NDEBv
 - **IAN1 & IAN2:** integer atomic numbers of the atoms/particles #1 & 2 forming the molecule. If both are positive and ≤ 109 , atomic masses from the tabulation in subroutine MASSES will generate the reduced mass of the system. If either is ≤ 0 or > 109, the mass of that particle must be input via READ statement #2.
 - IMN1 & IMN2: integer mass numbers of the atoms #1 & 2 forming the molecule. For a normal stable atomic isotope, the mass is taken from the tabulation in subroutine MASSES; if IMN1 or IMN2 lies outside the range for the normal stable isotopes of that atom, the abundance-averaged atomic mass is used.
 - **CHARGE:** \pm integer for the total charge on the molecule. Used to generate Watson's charge-modified reduce mass for neutral or ionic molecules:[26] $\mu = \mu_W = M_A M_B / (M_A + M_B - m_e \times \text{CHARGE})$.
 - **NDEGv:** specifies whether G_v for this state is to be represented: a) by the Dunham expansion of Eq. (9) when NDEGv = 0, b) by the NDE expressions of Eqs. (12) and (14)-(16), when NDEGv = 1, or c) by the Tellinghuisen-type MXR "mixed" representation of Eq. (18) when NDEGv = 2.
 - **NDEBv**: specifies whether B_v for this state is to be represented: a) by the Dunham expansion of Eqs. (10) when NDEBv = 0, b) by the NDE expressions of Eqs. (13) and (14) (16), when NDEBv = 1, or c) by the Tellinghuisen-type MXR "mixed" representation of Eq. (19) when NDEBv ≥ 2 . If no rotational data are available and a potential is to be generated using a Morse function inner wall (see § 2.5), one should set NDEBv = -1. Note that necessarily NDEBv \leq NDEGv.

In the special case that IAN1 and/or IAN2 is either ≤ 0 or > 109, we read in a two-character alphanumeric name for that particle and its mass (in amu). This facilitates the treatment of model systems or of exotic species such as muonium or positronium "molecules".

#2.a IF((IAN1.LE.0).OR.(IAN1.GT.109)) READ(5,*) NAME1, MASS1
#2.b IF((IAN2.LE.0).OR.(IAN2.GT.109)) READ(5,*) NAME2, MASS2

NAME1 & NAME2: a two-character alphanumeric name for the particle whose mass is being read, enclosed in single quotes, as in 'mu'.

MASS1 & MASS2: the masses (in amu) of the particles.

Read a title or output header for the calculation, consisting of up to 78 characters on a single line enclosed between single quotes: e.g., 'title of problem'.

#3. READ(5,*) TITLE

Representation for the vibrational energies G_v

READ statements #4 - 9 are concerned with the three possible ways of representing G_v : #4 & 5 are used for a pure Dunham function, #7 - 9 for a pure NDE function, and all of #4 - 9 are used for an MXR function.

If Dunham or MXR expansions are used for G_v (NDEGv = 0 or 2), read in the (integer) order of the G_v vibrational polynomials, LMAXGv, and values of the Dunham coefficients $Y_{l,0}$, starting with l = 1.

#4. READ(5,*) LMAXGv

[#]5. READ(5,*) (YLO(L), L= 1,LMAXGv)

If an MXR mixed representation is to be used for G_v (NDEGv = 2), read in the *real number* values of VS = v_s , the value of v at which the Dunham/NDE switching function Eq. (17) is centred, and of DVS = δv_s , the width parameter for that switching function. Because of the sensitivity of the calculation to their values, VS and DVS should be read in floating point "d" format (e.g., $v_s = 55.0d0$).

For an MXR function, the absolute value of DLIM $\equiv [G(v = v_{\mathfrak{D}}) - G(v = -1/2)]$ must also be specified.

#6. READ(5,*) VS, DVS, DLIM

If an NDE or MXR functions is used for G_v (NDEGv ≥ 1), read in parameters characterizing the NDE function that are to be used.

- #7. READ(5,*) NLR, ITYPE, IZPO, IZQO, NPO, NQO, vD, XCNO
 - **NLR**: is the integer power of the asymptotically-dominant inverse-power term in the longrange potential of Eq. (11).
 - **ITYPE**: is an integer specifying the type of NDE expression to be used for G_v :
 - ITYPE = 1 for an "outer" rational polynomial expansion using Eq. (15) with S = 1.
 - ITYPE = 2 for an "inner" rational polynomial expansion using Eq. (15) with S = 2n/(n-2).
 - ITYPE = 3 uses the exponential NDE function of Eq. (16).
 - **IZPO & IZQO:** are the values of the integer t specifying the leading term in the polynomial expansions in, respectively, the numerator and denominator of Eq. (15) for ITYPE = 1 or 2, while for ITYPE = 3 IZPO specifies the power of the leading term in the exponent expansion of Eq. (16) and IZQO is a dummy variable.
 - **NP0 & NQ0:** are the (integer) numbers of coefficients in, respectively, the numerator and denominator polynomials of Eq. (15) for ITYPE = 1 or 2, while for ITYPE = 3 NP0 is the number of terms in the exponent polynomial of Eq. (16) and NQ0 is a dummy variable which should be set ≤ 0 : NP0 = L + 1 t and NQ0 = M + 1 t.
 - **vD**: is the non-integer effective vibrational index at dissociation $v_{\mathfrak{D}}$, and should be read in floating point "d" format (e.g., $v_{\mathfrak{D}} = 64.41 \text{d0}$).
 - **XCN0**: is the numerical value of the ND-theory coefficient $X_0(n, C_n, \mu)$ of Eq. (14) for m = 0.

Now read in the actual values of the NDE expansion coefficients $PO(i) = p_{i-t+1}^0$ and $QO(j) = q_{j-t+1}^0$ required to define the particular NDE function.

#8. READ(5,*) (PO(i), i=1, NPO)
#9. READ(5,*) (QO(j), j=1, NQO)

Representation for the inertial rotational constants B_v

If a Dunham or MXR expansion is used for B_v (NDEBv = 0 or 2), read in the order of the B_v vibrational polynomial LMAXBv and the values of the expansion coefficients $YL1(l) = Y_{l,1}$ for l = 0 - LMAXBv.

#11. READ(5,*) LMAXBv

#11. IF(LMAXBv.GE.0) READ(5,*) (YL1(L), L= 0,LMAXBv)

If an NDE or MXR functions is used for B_v , read the parameters defining the type of NDE function and the values of the associated expansion parameters. The function types and definitions of the parameters are precisely analogous to those for the vibrational case: see description of READs #7-9.

```
#13. READ(5,*) ITYPB, IZP1, IZQ1, NP1, NQ1, XCN1
#14. READ(5,*) (P1(I), I=1, NP1)
#15. READ(5,*) (Q1(J), J=1, NQ1)
```

Finally, specify the sophistication of the calculation and define the set(s) of v values for which turning points are to be calculated.

- $^{\#}16.$ READ(5,*) Kaiser, NSV, VEXT
 - **Kaiser**: is an integer that specifies whether (Kaiser ≥ 1) or not (Kaiser = 0) the "Kaiser correction" of § 2.1 is to be applied.
 - **NSV:** is an integer specifying the number of different mesh sizes Δv to be used in specifying the set of v values for which turning points are to be calculated.
 - **VEXT**: is a real number whose value controls the option that allows the program to correct unphysical behaviour of the upper part of the inner potential wall defined by the input G_v and B_v functions, as described in §2.4. For VEXT ≤ 0.0 , no inner-wall smoothing is performed, but if VEXT > 0.0, for v >VEXT inner turning points $r_1(v)$ are generated from Eq. (21) using values of the coefficients A, B & C determined by fitting this function to the inner turning points for the three largest v values with $v \leq$ VEXT, while the outer turning points are defined as the sum of these analytic values plus the calculated quantity 2f.

For each of NSV cases, read in (floating point) variables V1(i), DV(i) & V2(i) to specify the set of v values running from V1(i) to V2(i) in steps of DV(i) = Δv , at which turning points are to be calculated. If necessary, the program internally corrects the input values of V2(i) to ensure that when NSV > 1, necessarily V1(i) \leq V2(i+1). A reasonable example would be to set NSV = 2 and then to input

 $\{V1(i),\, DV(i),\, V2(i)\} \,=\, \{-0.4d0,\, 0.2d0,\, 1.6d0\} \quad \text{and} \quad \{2.0d0,\, 0.5d0,\, v_{max}\} \quad \text{for} \quad i=1 \ \& \ 2 \ (1.6d0) \$

in which v_{max} is the highest vibrational level for which turning points are desired. It is usually best to set $V1(1) \ge -0.4d0$.

#17. READ(5,*) V1(i), DV(i), V2(i)

Appendix C. Illustrative Sample Data Files and Commentary

This section presents sample data files and (truncated) outputs for seven cases, and discusses some features of the results illustrated by the Channel-6 output files. Note that in the sample data files shown below, the "%" symbol appearing on most lines after the last parameter associated with that READ statement and any following text are merely comments, and are ignored by the program. It is often convenient to include such comments in the input files to help recall which parameter is which.

C.1 Cases (i) & (ii): Standard Dunham-Representation Applications

The first two sample data files shown below are for the common case in which pure Dunham polynomials in $(v + \frac{1}{2})$ are used for both G_v and B_v . The experimental data on which these Dunham polynomials were based stops at v = 82, so the turning point calculation also stops there. The input data files for these cases are shown below.

```
% IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
53 127 53 127
                0
                  0 0
'(i) Dunham Calculation with Gerstenkorn constants for I2(B)
                                                                [VEXT = 0]
                                      % LMAXGv
16
 1.256643430002D+2 -7.475284960242D-01 -5.016833169864D-3 3.788414181699D-4
-4.983773834286D-5 4.200565944860D-06 -2.462699605029D-7 1.035559345644D-8
-3.168784847369D-10 7.099055257498D-12 -1.159685360751D-13 1.361205680478D-15
-1.115309496593D-17 6.046170833273D-20 -1.947198245975D-22 2.820031243526D-25
                                       % LMAXBv
15
 2.900080684844D-2 -1.496203558218D-04 -1.122999681016D-6 -8.598750387065D-9
-3.993514191186D-9 7.442705931721D-10 -7.729114740147D-11 4.998660579762D-12
-2.157393379080D-13 6.436910217056D-15 -1.347501253707D-16 1.977227945639D-18
-1.994896518940D-20 1.320031684314D-22 -5.162433698190D-25 9.047632057664D-28
                                      % Kaiser NSV VEXT
 0
    2 0.d0
 -0.4d0
         0.2d0
                1.6d0
                                      %(1) V1 DV V2
  2.0d0
        1.0d0
                82.d0
                                      %(2) V1 DV V2
53 127 53 127
                0 0 0
                                      % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
'(ii) Dunham Calculation with Gerstenkorn constants for I2(B)
                                                                 [VEXT = 45]'
16
                                      % LMAXGv
 1.256643430002D+2 -7.475284960242D-01 -5.016833169864D-3 3.788414181699D-4
-4.983773834286D-5 4.200565944860D-06 -2.462699605029D-7 1.035559345644D-8
-3.168784847369D-10 7.099055257498D-12 -1.159685360751D-13 1.361205680478D-15
-1.115309496593D-17 6.046170833273D-20 -1.947198245975D-22 2.820031243526D-25
                                      % LMAXBv
15
 2.900080684844D-2 -1.496203558218D-04 -1.122999681016D-6 -8.598750387065D-9
-3.993514191186D-9 7.442705931721D-10 -7.729114740147D-11 4.998660579762D-12
-2.157393379080D-13 6.436910217056D-15 -1.347501253707D-16 1.977227945639D-18
-1.994896518940D-20 1.320031684314D-22 -5.162433698190D-25 9.047632057664D-28
    2
       45.d0
                                      % Kaiser NSV VEXT
 0
 -0.4d0
         0.2d0
                1.6d0
                                      %(1) V1 DV V2
        1.0d0
                82.d0
                                      %(2) V1 DV V2
  2.0d0
```

Case (i) is a calculation performed with the input value of VEXT = 0, so that no inner-wall extrapolation is performed. However, the rapid growth of the value of C(exp) above $v \sim 45$ and the warning message printed at v = 63 shows that the inner-wall unreliability discussed in §2.4 is a problem here.

Case (ii) repeats exactly the same calculation as Case (i), but with the input value VEXT = 45, so that for v > 45 the inner wall is defined by Eq. (21) and the outer turning points are adjusted accordingly. As shown by the resulting values of d(RMIN) in the last column of the output for

this case, the resulting inner-wall smoothing requires only very modest displacements of the turning At NDIV= ... " points. The various warning messages " ******* STOP ITERATION: appearing in both output files for v > 69 illustrates the type of convergence problem that was discussed at the end of §2.3. At high v the higher-order terms in Dunham polynomials tend to yield large contributions of alternating sign, and a substantial amount of numerical cancellation occurs when they are combined to give the overall values of G_v , $G_{v'}$ and $B_{v'}$ appearing in the integrands of Eq. (2) and (3). This loss of significant digits introduces "numerical noise" into the calculation, and prevents the specified degree of numerical convergence from being achieved. Precisely the same problem sometimes occurs at low v when using high-order pure NDE functions, because of the high powers of $(v_{\mathfrak{D}} - v)$ involved. This problem usually has nothing to do with the RKR procedure itself, but rather is a precision problem associated with the type of G_v and/or B_v representation being employed. In this case the best way of avoiding this type of problem would be to use MXR representations, as relatively lower-order polynomials would be required for both the Dunham and NDE components of the MXR than for equivalent pure Dunham or NDE functions of equivalent quality, so that the introduction of numerical noise due to cancellation of significant digits would be greatly reduced.

Standard Channel-6 output for Case (i): Dunham-Representation Application with VEXT = 0

<pre>(i) Dunham Calculation with Gerstenkorn constants for I2(B) (VEXT = 0) ************************************</pre>
Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times. performing 16-point Gaussian quadrature in each segment
The 16 Dunham Gv expansion coefficients are 1.2566434300D+02 -7.4752849602D-01 -5.0168331699D-03 3.7884141817D-04 -4.9837738343D-05 4.2005659449D-06 -2.4626996050D-07 1.0355593456D-08 -3.1687848474D-10 7.0990552575D-12 -1.1596853608D-13 1.3612056805D-15 -1.1153094966D-17 6.0461708333D-20 -1.9471982460D-22 2.8200312435D-25
The 16 Dunham Bv expansion coefficients are 2.9000806848D-02 -1.4962035582D-04 -1.1229996810D-06 -8.5987503871D-09 -3.9935141912D-09 7.4427059317D-10 -7.7291147401D-11 4.9986605798D-12 -2.1573933791D-13 6.4369102171D-15 -1.3475012537D-16 1.9772279456D-18 -1.9948965189D-20 1.3200316843D-22 -5.1624336982D-25 9.0476320577D-28
At v00= -0.50000 Gv= 0.00000000 dG/dv= 125.6643 (1/2)d2G/dv2= -0.747528 Bv= 0.02900081 { ==> Req= 3.026702550(A) } alpha_e = 0.000149620
Resulting Turning Points:
v E(v) dE(v)/dv B(v) Rmin(v) Rmax(v) NDIV tst(f) tst(g) C(exp) d(RMIN)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
delete 35 lines of intermediate output
41.000 3681.1924 47.2736 0.0194400086 2.6537024925 4.3732707113 2 1.9D-14 0.0D+00 5.192286 42.000 3727.4605 45.2666 0.0190953193 2.6519000717 4.4195058415 2 7.3D-15 0.0D+00 5.224621

43.000 44.000 45.000 46.000 47.000 48.000 50.000 51.000 52.000 53.000 54.000 55.000 55.000 56.000 57.000 58.000 59.000 60.000 61.000 62.000 **** CAUT	3771.7343 3814.0412 3854.4110 3892.8760 3929.4709 3964.2321 3997.1980 4028.4084 4057.9046 4085.7289 4111.9244 4136.5351 4159.6059 4181.1819 4201.3091 4220.0337 4237.4027 4253.4639 4268.2654 4281.8564 00 *** inpe	43.2856 41.3331 39.4118 37.5240 35.6718 33.8570 32.0814 30.3464 28.6531 27.0026 25.3958 23.8333 22.3158 20.8439 19.4181 18.0390 16.7071 15.4232 14.1880 13.0023 r wall expo	0.0187450476 0.0183893231 0.0180287557 0.0176620329 0.0172907158 0.0169144365 0.0165332948 0.0161473763 0.0157567507 0.0153614704 0.0149615706 0.0145570694 0.0141479701 0.0137342632 0.0137342632 0.0137342632 0.0123603129 0.0124653122 0.0120330036 0.0115960442 0.0111544832 0.0111544832	2.6501912338 2.6485727775 2.6470416301 2.6455948379 2.644294529529 2.64429430150 2.6429430150 2.6395291740 2.6395291740 2.6375985072 2.6375985072 2.635195469 2.635195469 2.635195469 2.6332340991 2.632689126 2.6321901705 2.6317363427 7.66347363427	4.4675139688 4.5174035438 4.5692910591 4.6233022676 4.6795736198 4.7382539489 4.7995064402 4.8635109219 5.0005947206 5.0741429189 5.1513884849 5.2326434674 5.3182600153 5.4086366543 5.5042255799 5.6055411791 5.7131700545 5.8277829069 5.9501487510 2.9501487510	2 2.7D-13 2 2.6D-13 2 5.6D-13 2 7.7D-13 2 8.4D-14 2 2.9D-14 2 7.5D-14 2 7.5D-14 2 7.5D-14 2 7.5D-14 2 3.1D-13 2 1.2D-13 2 1.2D-13 2 1.2D-12 2 3.7D-12 2 3.7D-12 3 4.8D-12 3 4.8D-12	0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 1.00D+000000000000000000000000000000	5.274020 5.347653 5.453395 5.599117 5.791765 6.036134 6.333525 6.680356 7.067006 7.477325 7.889412 8.278751 8.278751 8.24812 8.923178 9.204994 9.566790 0.213553 1.519257 4.112736 8.999369	
63.000	4294.2868	r wall expo 11.8670	0.0107084144	2.6313262135	6.0811520902	2 4.0D-11	0.0D+00 2	7.731861	
64.000 65.000	4305.6074 4315.8701	$10.7830 \\ 9.7512$	0.0102579875	2.6309588552	6.2218138926 6.3733175108	2 1.2D-11 2 8.8D-11	0.0D+00 4 0.0D+00 6	2.727788	
66.000	4325.1275	8.7726	0.0093450080	2.6303496491	6.5370411114	2 4.3D-11	0.0D+00 10	8.374840	
68,000	4333.4333	6.9782	0.0084182663	2.6299024668	6.9078935273	2 3.9D-11	0.00+00 17 0.00+00 27	7.904219	
69.000	4347.4081	6.1636	0.0079509683	2.6297359826	7.1191861088	4 7.0D-11	0.0D+00 44	0.777928	
*** STUP	ADED 1975	At NDIV=	16 tst(f)/(previous) = 3.4D	-10/1.5D-10 ts	t(g)/(previo	us) = 0.0D+00	/0.0D+00	
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 3.9D	-10/2.1D-10 ts	st(g)/(previo	us) = 0.0D+00)/0.0D+00	
71.000	4358.2357	4.7012	0.0070117035	2.6295012062	7.6071799085	8 3.9D-10	0.0D+00100	1.114776	
72.000 *** STOP	4362.6083 ITERATION:	4.0531 At NDIV=	0.0065411828 8 tst(f)/(previous)= 2.3D	-09/4.4D-10 ts	8 4.2D-11 t(g)/(previo	us) = 0.0D+00122	/0.0D+00	
73.000	4366.3602	3.4598	0.0060710625	2.6293572585	8.2082387252	8 2.3D-09	0.0D+00 74	1.232893	
74.000	4369.5458	2.9203	0.0056020488	2.6292973289	8.5646609995	2 5.2D-11	0.0D+00***	********	
75.000	4372.2184	2.4334	0.0051347613	2.6292304946	8.9686492907	8 1.2D-09	0.0D+00***	********	
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 2.2D	-09/1.9D-09 ts	st(g)/(previo	us)= 0.0D+00	/0.0D+00	
76.000	4374.4295	1.9973	0.0046696885	2.6291445031	9.4310262823	8 2.2D-09	0.0D+00***	*******	
77.000	4376.2292	1.6102	0.0042071562	2.6290268957	9.9664981544	8 5.6D-09	0.0D+00***	********	
*** STOP	ITERATION:	At NDIV=	16 tst(f)/(previous)= 1.8D	-08/1.8D-09 ts	st(g)/(previo	us)= 0.0D+00	/0.0D+00	
78.000	4377.6655	1.2700	0.0037473247	2.6288641803	10.5957277894	16 1.8D-08	0.0D+00***	*******	
*** STUP	11ERATION:	At NDIV=	8 tst(1)/(previous) = 1.00	-08/8.5D-09 ts	t(g)/(previo	us) = 0.0D+00	/0.0D+00	
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 2.2D	-08/2.2D-08 ts	st(g)/(previo	us)= 0.0D+00	/0.0D+00	
80.000	4379.6283	0.7211	0.0028359793	2.6283047716	12.2726819021	8 2.2D-08	0.0D+00***	******	
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 1.0D	-08/5.2D-09 ts	st(g)/(previo	us) = 0.0D+00	/0.0D+00	
81.000 *** STNP	4380.2397 ITERATION:	0.5082 At NDIV=	0.00238491/2 8 tst(f)/(2.62(16(4)) previous) = 6.6D	-08/2.0D-08 ts	o 1.0D-08 t(g)/(previo	us)= 0.0D+00***	********	
82.000	4380.6576	0.3339	0.0019382124	2.6267751470	14.9951672938	8 6.6D-08	0.0D+00***	*****	
*******	*********	********	******	******	******	********	********	******	******

Illustrative Channel-7 'exported' Output for Case (i)

(i) Dunham Calculatio	n with Gerstenkorn	constants for	I2(B)
NTP= 185 RKR turni	ng points for mu=	63.4522360000	
2.62677514702682	4380.65760088575		
2.62776747704117	4380.23973483585		
2.62830477159960	4379.62834557798		
2.62863695205478	4378.78403151789		
2.62886418031796	4377.66549364827		
2.62902689567425	4376.22924252643		
2.62914450309652	4374.42952124383		
2.62923049459116	4372.21837854992		
2.62929732892902	4369.54584835785		
2.62935725853759	4366.36020386397		
2.62942182449420	4362.60826201274		
2.62950120618387	4358.23571805973		
2.62960377713792	4353.18749189746		
2.62973598261309	4347.40806998883		
2.62990246679508	4340.84182826540		
2.63010636039545	4333.43332355261		
omit 60 1	ines		
2.82954485456883	/84.1/8/6660/28		
2.84287084849047	667.88846971460		
2.85/934/255/816	549.985518/2415		
2.87536808220588	430.48990122119		
2.89630884723996	309.42123//834/		
2.90613415621106	260.55771065056		
2.9114/338/46386	236.03314370519		
2.91/15864419834	211.44692651450		
2.92325372051888	186.79922689459		
2.92984464998390	162.09021653568		
2.93/052325589//	137.32007179574		
	112.4009/459509		
2.95414341724933	01.59111342140		
2.9648301/314/63			
2.9/824459469180	37.63189283144		
2.99826860982315	12.55895403562		

(VEXT = 0)

3.02670255019776 3.05645807030235 3.07913222410956 3.09520615091131 3.10856185583827 3.12032759886547 3.13101950487040 3.14092496062325 3.15022345657212 3.15903597719346 3.16744864904584 3.17552536044531 3.19085620618194 3.22574368302320 3.25739473907939 3.28695957093366 3.31508221725534 3.34216881736425	$\begin{array}{c} 0.000000000\\ 12.55895403562\\ 37.63189283144\\ 62.64468445586\\ 87.59711342140\\ 112.48897459509\\ 137.32007179574\\ 162.09021653568\\ 186.79922689459\\ 211.44692651450\\ 236.03314370519\\ 260.55771065056\\ 309.42123778347\\ 430.48990122119\\ 549.98551872415\\ 667.88846971460\\ 784.17876660728\\ 898.83593156504 \end{array}$
omit 62 7.35118694827326 7.60717990850308 7.89119299441792 8.20823872523806 8.56466099947824 8.96864929073722 9.43102628229367 9.96649815440838 10.59572778944601 11.34895105596528 12.27268190208392 13.44308932634094 14.99516729384480	lines

Standard Channel-6 output for Case (ii): Dunham-Representation Application with VEXT > 0

(ii) Dunham Calculation with Gerstenkorn constants for I2(B) (VEXT =45) Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times. performing 16-point Gaussian quadrature in each segment The 16 Dunham Gv expansion coefficients are
 Jumma
 W
 expansion
 conficted at a state of the st 3.7884141817D-04 1.0355593456D-08 1.3612056805D-15 1.3612056805D-15 2.8200312435D-25 The 16 Dunham Bv expansion coefficients are
 Dumma
 Dv
 Expansion
 Coefficient (Coefficient)
 Coefficient)
 Coefficient
 <thCoefficient</th>
 <thCoefficient</th>
 < -1.9948965189D-20 125.6643 (1/2)d2G/dv2= -0.747528 Req= 3.026702550(A) } Gv= 0.0000000 Bv= 0.02900081 dG/dv= 125.6643 { ==> Req= 3.0 At v00= -0.50000 alpha_e = 0.000149620 v = 45.000extrapolate inner wall with exponential Above fitted to last 3 points (& shift RMAX accordingly) Calculate turning points at the -0.40 -0.20 0.00 0.20 0 2.00 3.00 4.00 5.00 6 92 v values 0.60 7.00 18.00 29.00 40.00 51.00 62.00 73.00 0.80 8.00 19.00 30.00 41.00 52.00 63.00 74.00 -0.40 2.00 13.00 24.00 35.00 $\begin{array}{c} 1.00\\ 9.00\\ 20.00\\ 31.00\\ 42.00\\ 53.00\\ 64.00\\ 75.00\end{array}$ $1.20 \\ 10.00 \\ 21.00 \\ 32.00 \\ 43.00 \\ 54.00 \\ 65.00 \\ 76.00$ $1.40 \\ 11.00 \\ 22.00 \\ 33.00 \\ 44.00 \\ 55.00 \\ 66.00 \\ 77.00$ 1.60 12.00 23.00 34.00 45.000.40 3.00 14.00 25.00 36.00 47.00 58.00 69.004.00 15.00 26.00 37.00 48.00 59.00 70.00 $\begin{array}{r}
 3.00 \\
 16.00 \\
 27.00 \\
 38.00 \\
 49.00 \\
 60.00 \\
 71.00 \\
 20 \\
 00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.00 \\
 71.0$ 6.00 17.00 28.00 39.00 50.00 61.00 72.00 46.00 57.00 68.00 79.00 56.00 67.00 76.00 77 00 78.00 80.00 81.00 82.00 Resulting Turning Points: C(exp) dE(v)/dv B(v) Rmin(v) Rmax(v) NDIV tst(f) d(RMIN) v Ē(v) ******************* :) tst(g) xmin(v)
x+************
2.9982686098
2.9782445947
2.9648301731
2.9541434172
2.9450561482
2.9370523256
2.9298446500
2.9232537205
2.9114733875
2.9061341562
2.8963088472
2.8753680822
2.8753680822
2.8579347256
2.8428708485 ******* -0.400 -0.200 0.000 0.200 125.5147 125.2145 124.9132 124.6109 0.0289858336 0.0289558194 0.0289257146 0.028955185 2.0D-15 1.0D-15 1.9D-15 1.1D-15 22222222222222222222 1.1D-15 8.9D-16 7.8D-16 2.6D-15 5.3D-15 3.2D-15 2.0D-15 1.3D-15 6.7D-16 5 3D-15 8.9D-16 8.9D-16 $24.136903 \\ 18.743521$ 8.9D-16 2.7D-15 5.6D-15 3.4D-15 1.2D-15 1.6D-15 4.4D-16 5.3D-15 6.7D-16 1.6D-15 3.2D-15 1.3D-15 $\begin{array}{c} 124.6109\\ 124.3076\\ 124.0033\\ 123.6980\\ 123.3919\\ 122.7771\\ 122.4684\\ 121.8487\\ 120.2854\\ 118.7026\\ 117.1000 \end{array}$ 3.1203275989 3.1310195049 3.1409249606 3.1502234566 3.1590359772 3.1674486490 3.1755253604 0.02836523040.02883484940.02883484940.02880437460.02877380520.02874314010.02871237830.400 0.600 0.800 16.187465 10.10740314.58950213.4643541.0001.2001.40012.615397 11.944830 11.397566 1.600 2.000 3.000 260.5577 309.4212 430.4899 0.0286815190 5 3D-15 10.939821 0.02868151900.02861950340.02846268750.02830323993.1755253604 3.1908562062 3.2257436830 3.2573947391 3.2869595709 5.3D-15 1.1D-15 1.9D-15 2.9D-15 1.6D-15 10.441069 9.702227 4.000 5.000 549.9855 667.8885 8.895459 0.0281410524 8.178077

			delete 35 intermediate lines of output	
$\begin{array}{c} 41.000\\ 42.000\\ 43.000\\ 44.000\\ 45.000\\ 46.000\\ 46.000\\ 48.000\end{array}$	3681.1924 3727.4605 3771.7343 3814.0412 3854.4110 3892.8760 3929.4709 3964.2321	$\begin{array}{c} & 47.2736\\ 45.2666\\ 43.2856\\ 41.3331\\ 39.4118\\ 37.5240\\ 35.6718\\ 33.8570 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 2 -0.0000003127 2 -0.0000012529 2 -0.0000031241
49.000 50.000	3997.1980 4028.4084	$32.0814 \\ 30.3464$	0.0165332948 2.6417263314 4.7995002393 2 7.5D-14 0.0D+00 5.45339 0.0161473763 2.6405847486 4.8635002115 2 7.1D-13 0.0D+00 5.45339	$\begin{array}{ccc} 2 & -0.000062009 \\ -0.0000107104 \end{array}$
	•••••		delete 15 intermediate lines of output	
66.000 67.000 68.000 69.000 *** STOP	4325.1275 4333.4333 4340.8418 4347.4081 TTERATION:	8.7726 7.8480 6.9782 6.1636 At. NDTV=	0.0093450080 2.6300725431 6.5367640053 2 4.3D-11 0.0D+00 5.453392 0.0088831328 2.6297867831 6.7142792283 4 2.9D-11 0.0D+00 5.453392 0.0084182663 2.6295322691 6.9075233296 2 3.9D-11 0.0D+00 5.453392 0.0079509683 2.6293069854 7.1187571116 4 7.0D-11 0.0D+00 5.453392 16 tst(f)/(previous)= 3.4D-10/1.5D-10 tst(g)/(previous)= 0.0D+00/0.0D+00	-0.0002771061 2 -0.0003195773 2 -0.0003701977 2 -0.0004289972
70.000	4353.1875	5.4046	0.0074818794 2.6291089257 7.3506920969 16 3.4D-10 0.0D+00 5.45339	2 -0.0004948514
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 3.9D-10/2.1D-10 tst(g)/(previous)= 0.0D+00/0.0D+00	
71.000 72.000 *** STOP	4358.2357 4362.6083 ITERATION:	4.7012 4.0531 At NDIV=	0.0070117035 2.6289360989 7.6066148012 8 3.9D-10 0.0D+00 5.45339 0.0065411828 2.6287865356 7.8905577055 8 4.2D-11 0.0D+00 5.45339 8 tst(f)/(previous)= 2.3D-09/4.4D-10 tst(g)/(previous)= 0.0D+00/0.0D+00	2 -0.0005651073 2 -0.0006352889
73.000 74.000 *** STOP	4366.3602 4369.5458 ITERATION:	3.4598 2.9203 At. NDTV=	0.0060710625 2.6286582973 8.2075397640 8 2.3D-09 0.0D+00 5.45339 0.0056020488 2.6285494849 8.5639131555 2 5.2D-11 0.0D+00 5.45339 8 tst(f)/(previous)= 1.2D-09/5.3D-10 tst(g)/(previous)= 0.0D+00/0.0D+00	-0.0006989612 -0.0007478440
75.000	4372.2184	2.4334	0.0051347613 2.6284582488 8.9678770450 8 1.2D-09 0.0D+00 5.453392	-0.0007722458
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 2.2D-09/1.9D-09 tst(g)/(previous)= 0.0D+00/0.0D+00	
76.000	4374.4295	1.9973	0.0046696885 2.6283827981 9.4302645773 8 2.2D-09 0.0D+00 5.453392	2 -0.0007617050
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 5.6D-09/3.5D-09 tst(g)/(previous)= 0.0D+00/0.0D+00	
77.000	4376.2292	1.6102	0.0042071562 2.6283214092 9.9657926679 8 5.6D-09 0.0D+00 5.45339	2 -0.0007054865
*** STOP	ITERATION:	At NDIV=	16 tst(f)/(previous)= 1.8D-08/1.8D-09 tst(g)/(previous)= 0.0D+00/0.0D+00	
78.000	4377.6655	1.2700	0.0037473247 2.6282724330 10.5951360422 16 1.8D-08 0.0D+00 5.453392	2 -0.0005917473
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 1.0D-08/8.5D-09 tst(g)/(previous)= 0.0D+00/0.0D+00	
79.000	4378.7840	0.9744	0.0032902410 2.6282343000 11.3485484039 8 1.0D-08 0.0D+00 5.45339	2 -0.0004026521
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 2.2D-08/2.2D-08 tst(g)/(previous)= 0.0D+00/0.0D+00	
80.000	4379.6283	0.7211	0.0028359793 2.6282055210 12.2725826515 8 2.2D-08 0.0D+00 5.45339	2 -0.0000992506
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 1.0D-08/5.2D-09 tst(g)/(previous)= 0.0D+00/0.0D+00	
81.000	4380.2397	0.5082	0.0023849172 2.6281846842 13.4435065335 8 1.0D-08 0.0D+00 5.45339	2 0.0004172072
*** STOP	ITERATION:	At NDIV=	8 tst(f)/(previous)= 6.6D-08/2.0D-08 tst(g)/(previous)= 0.0D+00/0.0D+00	
82.000	4380.6576	0.3339	0.0019382124 2.6281704443 14.9965625911 8 6.6D-08 0.0D+00 5.45339	2 0.0013952972
******	******	*********	***********************************	*********
For v	.GE. 45.00 ***********	inner wall	extrapolated as: V(R) = -1000.5387 + 0.90236044D+10*exp(- 5.45339201*R)) *******

C.2 Cases (iii) & (iv): Pure NDE G_v and B_v Function Applications

The third and fourth data files are based on NDE functions reported for the $1 {}^{3}\Sigma_{g}^{-}$ state of Na₂.[52] These two cases again differ only in that one uses VEXT = 0 and the other VEXT = 35, with the value of VEXT used in Case (iv) having been selected based upon trends in the values of C(exp) seen in the output for Case (iii) in Appendix D. The output for Case (iii) shows three different types of warning message associated with inner-wall misbehaviour, but from the output for Case (iv) we see that the turning point adjustments required to give a smooth inner wall are also quite modest for this case, especially relative to the magnitude of the turning point differences [RMAX(v) - RMIN(v)]. Note too that in contrast to Cases (i) and (ii), these Na₂ calculations apply the Kaiser correction, so that the lower bound on the integrals in Eqs. (2) and (3) is v00 = $v_{\min} = -0.5018267...$.

11 23 11 23 0 1 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv '(iii) JCP 111,3494(1999): NDE functions for Na2(1^3Sigma): VEXT = 0' 6 1 1 1 3 2 61.41d0 4.4867d-2 % NLR ITYPE IZPO IZQO NPO NQO VD XCNO 0.436636d0 -3.529d-3 1.54d-5 4.8d-2 1.366d-2 3 1 0 7 0 3.0921d-3 % ITYPB IZP1 IZQ1 NP1 NQ1 XCN1 0.1341d0 -1.6863d-2 9.2d-4 -2.810837d-5 4.924d-7 -4.61952d-9 1.8d-11 % Kaiser NSV VEXT 1 2 0.d0 -0.4d0 0.2d0 1.6d0 %(1) V1 DV V2 1.d0 1.0d0 61.d0 %(2) V1 DV V2 11 23 11 23 0 1 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv '(iv) JCP 111,3494(1999): NDE functions for Na2(1^3Sigma): VEXT = 35' 61.41d0 4.4867d-2 % NLR ITYPE IZPO IZQO NPO NQO VD XCNO 6 1 1 1 3 2 0.436636d0 -3.529d-3 1.54d-5 4.8d-2 1.366d-2 3 1 0 7 0 3.0921d-3 % ITYPB IZP1 IZQ1 NP1 NQ1 XCN1 0.1341d0 -1.6863d-2 9.2d-4 -2.810837d-5 4.924d-7 -4.61952d-9 1.8d-11 35.d0 % Kaiser NSV VEXT 1 2 -0.4d0 0.2d0 1.6d0 %(1) V1 DV V2 %(2) V1 DV V2 1.d0 1.0d0 61.d0

Channel-6 Output file for Case (iii): Pure NDE Functions for G_v and B_v VEXT = 0

(iii) JCP 111,3494(1999): NDE functions for Na2(1^3Sigma): VEXT = 0 with RKR potential for Na(23)-Na(23) Charge= 0 Reduced mass ZMU= 11.49488464100 and constant C_u/ZMU = 1.466533134736 from atomic masses: 22.9897692820 & 22.9897692820(u) Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times. performing 16-point Gaussian quadrature in each segment NDE for Gv is an (NP= 3/NQ= 2) OUTER Pade expansion in (vD-v) with XO(n=6)= 4.4867000D-02 and leading num. and denom. powers 1 & vD= 61.410000 D-G(v=-1/2)= 3432.458368 Numerator coefficients are: 4.36636000000D-01 -3.52900000000D-03 1.5400000000D-05 Denominator coefficients : 4 8000000000D-02 1 36600000000D-02 4.80000000000D-02 1.3660000000D-02 Denominator coefficients : NDE for Bv is an (NP= 7/NQ= 0) Exponential expansion in (vD-v) with
 Ior
 BV
 IS and
 (MF- //MQ- 0)
 Exponential
 Exponentia
 Exponential</t Calculate Gv= 0.00000000 dG/c Bv= 0.11833058 { == alpha_e = 0.001881624 93.7457 (1/2)d2G/dv2= -0.451924 Req= 3.520444006(A) } At v00= -0.50183 dG/dv= { ==> Calculate turning points at the 67 v-values -0.40 -0.20 0.00 0.20 0.40 0.60 0.00 0.20 0.40 0.60 1.00 2.00 3.00 4.00 5.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 -0.20 7.00

17.00	18.00	19.00	20.00	21.00	22.00	23.00	24.00	25.00	26.00	27.00
28.00	29.00	30.00	31.00	32.00	33.00	34.00	35.00	36.00	37.00	38.00
39.00	40.00	41.00	42.00	43.00	44.00	45.00	46.00	47.00	48.00	49.00
50.00	51.00	52.00	53.00	54.00	55.00	56.00	57.00	58.00	59.00	60.00
61.00										

Resultin	g Turning Po	ints:								
v	E(v)	dE(v)/dv	B(v)	Rmin(v)	Rmax(v)	NDIV	tst(f)	tst(g)	C(exp)	d(RMIN)
******	*******	*********	*************	*************	*******	*****	*******	*******	********	*******
-0.400	9.5411	93.6537	0.1181411455	3.4433775243	3.6030899681	2	3.7D-12	3.7D-12		
-0.200	28.2538	93.4731	0.1177817356	3.3910255732	3.6662176913	2	4.5D-13	4.4D-13		
0.000	46.9304	93.2926	0.1174382433	3.3563299157	3.7114568524	2	5.8D-13	5.8D-13	9.540879	
0.200	65.5709	93.1123	0.1171096782	3.3288990458	3.7492108472	2	5.5D-14	0.0D+00	7.535556	
0.400	84.1753	92.9322	0.1167950997	3.3056943782	3.7825297317	2	7.1D-14	0.0D+00	6.547257	
0.600	102.7438	92.7521	0.1164936143	3.2853252705	3.8128152096	2	1.2D-13	0.0D+00	5.901498	
1.000	139.7727	92.3924	0.1159265724	3.2502928508	3.8671290938	2	7.9D-14	0.0D+00	5.307723	
2.000	231.7160	91.4946	0.1146836989	3.1817426241	3.9811208342	2	4.0D-14	0.0D+00	4.541315	
3.000	322.7622	90.5979	0.1136272512	3.1278016799	4.0774161687	2	3.4D-14	0.0D+00	3.770565	
4.000	412.9118	89.7012	0.1126941968	3.0821210964	4.1632699371	2	4.0D-14	0.0D+00	3.145085	
5.000	502.1641	88.8032	0.1118369435	3.0419589256	4.2421563702	2	4.1D-14	0.0D+00	2.770094	
				• • • • • • • • • • • • • • • • • • • •						
	• • • • • • • • • • • • •		delete 25 1	ntermediate line	es of output	• • • • • •	• • • • • • • •		• • • • • • • • • • •	
31 000	2475 5535	60 8194	0 0853376407	2 5748003281	5 8987370706	••••	6 6D-15	0 00+00	2 494313	
32 000	2535 6636	59 3943	0.0839351846	2 5660411629	5 9710694085	2	3 0D-15	0.00+00	2 557118	
33 000	2594 3287	57 9291	0 0824882473	2 5576787510	6 0454465171	2	5 3D-15	0.00+00	2 572445	
34 000	2651 5077	56 4219	0 0809967870	2 5496940544	6 1220842278	2	8 9D-16	0.00+00	2 516015	
35 000	2707 1579	54 8708	0 0794609787	2 5420647863	6 201220242	2	2 4D-15	0.00+00	2 361046	
36 000	2761 2341	53 2737	0 0778809883	2 5347655285	6 2831192628	2	4 1D-15	0 0D+00	2 080646	
37 000	2813 6893	51 6284	0 0762566898	2 5277681799	6 3680802034	2	2 2D-15	0 0D+00	1 651688	
38 000	2864 4740	49 9324	0 0745873285	2 5210427621	6 4564445628	5	2 2D-16	0.00+00	1 060115	
39.000	2913.5363	48,1832	0.0728711368	2.5145586043	6.5486077891	2	1.6D-15	0.0D+00	0.307079	
*** CAUT	'ION *** Inn	er potentia	al wall has neg	ative curvature	and requires a	smooth	ing for	VEXT .g	e. 40.00	
40.000	2960.8217	46.3779	0.0711049093	2.5082859223	6.6450335476	2	1.7D-15	0.0D+00	-0.585320	
41.000	3006.2725	44.5136	0.0692835503	2.5021977994	6.7462721082	2	4.4D-15	0.0D+00	-1.570285	
42.000	3049.8281	42.5869	0.0673996069	2.4962725637	6.8529841480	$\overline{2}$	2.7D-15	0.0D+00	-2.575856	
43.000	3091.4244	40.5943	0.0654428122	2,4904965401	6.9659718637	2	4.9D-15	0.0D+00	-3.507648	
44.000	3130,9935	38,5319	0.0633996671	2.4848671285	7.0862201311	2	2.6D-15	0.0D+00	-4.252501	
45.000	3168.4635	36.3954	0.0612531062	2.4793961253	7.2149517566	2	2.2D-15	0.0D+00	-4.677874	
46.000	3203.7583	34,1806	0.0589823104	2.4741131522	7.3537029134	2	6.7D-16	0.0D+00	-4.618253	
47.000	3236.7971	31.8829	0.0565627497	2,4690689932	7.5044281613	2	1.1D-15	0.0D+00	-3.832714	
48.000	3267.4950	29.4981	0.0539665741	2.4643385610	7.6696499185	2	1.3D-15	0.0D+00	-1.897550	
49.000	3295.7631	27.0227	0.0511634986	2.4600231336	7.8526765723	2	2.2D-16	0.0D+00	2.069065	
50.000	3321.5095	24.4547	0.0481223659	2.4562514563	8.0579298257	2	2.2D-16	0.0D+00	10.203665	
*** CAUT	'ION *** inne	r wall expo	onent parameter	becomes very la	arge so skip co	onverg	ing it.			
51.000	3344.6420	21.7955	0.0448135876	2.4531793539	8.2914518932	2	1.3D-15	0.0D+00	28.503161	
52.000	3365.0721	19.0516	0.0412126675	2.4509877999	8.5617205253	2	5.7D-14	0.0D+00	79.410278	
53.000	3382.7221	16.2389	0.0373049516	2.4498802104	8.8810153652	2	2.8D-13	0.0D+00	292.309496	
*** WARN	ING *** inn	er wall bec	comes unstable a	at $v = 54.00$	where RMIN t	turns	ourward!			
54.000	3397.5369	13.3878	0.0330916168	2.4500815815	9.2678268990	2	1.7D-12	0.0D+00		
55.000	3409.5017	10.5499	0.0285966481	2.4518458748	9.7513732918	2	1.1D-11	0.0D+00		
56.000	3418.6677	7.8065	0.0238741458	2.4554853140	10.3807554101	2	7.8D-11	0.0D+00		
57.000	3425.1846	5.2741	0.0190147352	2.4614486705	11.2455146457	4	7.5D-14	0.0D+00		
58.000	3429.3359	3.1019	0.0141491994	2.4705000550	12.5288254702	4	1.5D-12	0.0D+00		
59.000	3431.5617	1.4483	0.0094468833	2.4840954640	14.6775186814	8	4.2D-13	0.0D+00		
60.000	3432.4448	0.4276	0.0051062558	2.5051465112	19.1825155133	28	1.7D-11	0.0D+00		
01.000	3432.6260	0.0272	0.001335/0//	2.5396187088	31.5136886421	32	8.5D-11	0.00+00	ale	la ale ale ale ale ale ale ale ale ale a
*****	****	~ ~ ~ ~ ~ ~ ~ ~ ~ * * *	******	*****	*****	****	*****	****	****	• • • • • • • • • • • • • • • • • • • • •

Channel-6 Output file for Case (iv): Pure NDE Functions for G_v and B_v VEXT > 0

Seek relative quadrature convergence 1.0D-10. Bisect inter performing 16-point Gaussian quadrature in each segment Bisect interval up to 5 times. NDE for Gv is an (NP= 3/NQ= 2) OUTER Pade expansion in (vD-v) with X0(n=6)= $4.4867000D{-}02$ and leading num. and denom. powers 1 & 1 vD= 61.410000 D-G(v=-1/2)= 3432.458368 Numerator coefficients are: 4.36636000000D-01 -3.52900000000D-03 1.54000000000D-05 Denominator coefficients : 4.80000000000D-02 1.36600000000D-02 NDE for Bv is an (NP= 7/NQ= 0) Exponential expansion in (vD-v) with X1(n=6)= 3.0921000D-03 and leading num. and denom. powers 1 & Numerator coefficients are: 1.34100000000D-01 -1.68630000000D-02 9.20000000000D-04 -2.81083700000D-05 4.92400000000D-07 -4.61952000000D-09 1.8000000000D-11 0 Calculate Gv= 0.00000000 dG/dv= 93.7457 (1/2)d2G/dv2= -0.451924 Bv= 0.11833058 { ==> Req= 3.520444006(A) } At v00= -0.50183 alpha_e = 0.001881624 v = 35.000 extrapolate inner wall with exponential Above fitted to last 3 points (& shift RMAX accordingly) Calculate turning points at the 67 v-values -0.40 -0.20 0.00 0.20 0.40 0.60 1.00 2.00 3.00 4.00 5.00

$6.00 \\ 17.00 \\ 28.00 \\ 39.00 \\ 50.00 \\ 61.00 $	7.00 18.00 29.00 40.00 51.00	$8.00 \\ 19.00 \\ 30.00 \\ 41.00 \\ 52.00$	9.00 20.00 31.00 42.00 53.00	$10.00 \\ 21.00 \\ 32.00 \\ 43.00 \\ 54.00$	$11.00 \\ 22.00 \\ 33.00 \\ 44.00 \\ 55.00$	12.00 23.00 34.00 45.00 56.00	$\begin{array}{r} 13.00 \\ 24.00 \\ 35.00 \\ 46.00 \\ 57.00 \end{array}$) 14.) 25.) 36.) 47.) 58.	00 00 00 00 00	15.00 26.00 37.00 48.00 59.00	0 16 0 27 0 38 0 49 0 60	.00 .00 .00 .00				
Resultin	g Turni	ng Poin	.ts:		B(w)		Bmin(<i>•</i>)		Bmax	(17)	NDTV	+e+(f)	tst(g)	C(evp)	d (RMIN)
v *******)ت ******	v) u ******	*******	******	D(V) ******	*****	*******	/ <i>)</i> *****	***	*****	(v) *****	*****	UDU(I) *******	*********	*********	************
-0.400 -0.200 0.000 0.200 0.400 0.600 1.000	9.5 28.2 46.9 65.5 84.1 102.7 139.7	411 538 304 709 753 438 727	93.6537 93.4731 93.2926 93.1123 92.9322 92.7521 92.3924	0.11 0.11 0.11 0.11 0.11 0.11 0.11	81411455 77817356 74382433 71096782 67950997 64936143 59265724	5 3. 5 3. 3 3. 2 3. 7 3. 3 3. 4 3.	4433775 3910255 3563299 3288990 3056943 2853252 2502928	5243 5732 9157 9458 3782 2705 3508	3. 3. 3. 3. 3. 3.	603089 666217 711456 749210 782529 812819 867129	99681 76913 58524 08472 97317 52096 90938	2 2 2 2 2 2 2 2 2	3.7D-12 4.5D-13 5.8D-13 5.5D-14 7.1D-14 1.2D-13 7.9D-14	3.7D-12 4.4D-13 5.8D-13 5.1D-14 8.5D-14 1.3D-13 9.1D-14	9.540879 7.535556 6.547257 5.901498 5.307723	
• • • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • •	de	lete 30	inter	mediate	e line	S O	f outp	put .	• • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •	
$\begin{array}{c} \dots \dots \dots \\ 32.000\\ 33.000\\ 34.000\\ 35.000\\ 35.000\\ 36.000\\ 39.000\\ 40.000\\ 41.000\\ 41.000\\ 41.000\\ 41.000\\ 42.000\\ 42.000\\ 44.000\\ 44.000\\ 44.000\\ 44.000\\ 44.000\\ 45.000\\ 45.000\\ 45.000\\ 55.000\\$	$\begin{array}{c}$	636 287 077 579 341 740 363 740 363 217 725 281 244 935 635 583 971 095 635 583 971 095 631 221 221 369 017 721 221 369 017 846 359 017 846 359 017 721 221 221 244 935 635 583 971 635 583 971 635 635 583 971 635 635 635 635 635 635 635 635 635 635	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07	3935184(2488247; 0996787 (099678; 7880988; 2871136; 2871136; 9283550; 7399606; 9283550; 7399606; 8982310; 6562749; 1163498; 8122365; 4813587(1212667; 73091616; 8596648; 30914735; 4149199; 94468833; 5106255; 1335707;		5660411 557678 549694 55420647 55420647 55420647 55420647 55420647 55420647 5042064 5083050 503258 4978930 4978930 4928316 4836144 4928316 4458072 4632607 4632607 4632607 4632607 4659812 4558677 4534707 453477 453477 453477	1629 7510 2544 863 5574 5376 5376 5377 5376 5376 53771 5376 5376 5376 5376 5376 5376 5376 5376	.5666666666667777778888899901124997**	971069 04544 122082 20122 28313 368144 456614 548963 64567 74733 854604 968306 089429 219166 359047 510962 677364 861465 067755 301537 571694 89012 275086 238335 512138 646990 130838 427524	44085 551711 422788 43317 42278 46211 44827 22565 55919 46553 59434 45533 99242 233064 22721 433362 22721 42878 333171 159435 46490 15624 44752 20770 033430 0753 33430 0753 33454 19915 1	· · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 3.0D-15\\ 5.3D-15\\ 8.9D-15\\ 4.1D-15\\ 2.2D-15\\ 2.2D-15\\ 2.2D-15\\ 2.2D-15\\ 2.2D-15\\ 2.2D-15\\ 4.4D-15\\ 2.7D-15\\ 2.6D-15\\ 2.2D-16\\ 1.1D-15\\ 2.2D-16\\ 1.3D-15\\ 2.2D-16\\ 1.3D-15\\ 2.2D-16\\ 1.3D-15\\ 5.7D-14\\ 1.3D-15\\ 5.7D-14\\ 1.3D-12\\ 1.1D-11\\ 7.5D-14\\ 1.5D-12\\ 1.7D-11\\ 8.5D-11\\ 1.7D-11\\ 8.5D-11\\ \end{array}$	$\begin{array}{c} 2.70 - 15\\ 5.60 - 15\\ 2.90 - 15\\ 2.90 - 15\\ 2.90 - 15\\ 3.90 - 15\\ 0.00 + 00\\ 0.00$	$\begin{array}{c} 2.557118\\ 2.577445\\ 2.516015\\ 2.361046\\ 2.36104\\ 2.36104\\ 2.36104\\ 2.36104\\ 2.36104\\ 2.36104\\ 2.361$	0.0000151289 0.0000644177 0.0003554675 0.0064504433 0.010607717 0.0023350797 0.0023350797 0.0023350797 0.0023350797 0.0053443930 0.0065341108 0.007143693 0.0087867447 0.0099761237 0.0099761237 0.009164807 0.0072537304 0.0072537304 0.0071775687 -0.0166871272 -0.035279944 -0.03516763942 -0.0861685674
For v	.GE. 35	.00 in	mer wal	l extra	polated	as:	V(R) =		410	.1832	+ 0.	12600	573D+07*e	exp(- 2.3	6104606*R)	
*******	******	******	******	******	*******	*****	******	*****	***	*****	*****	*****	*******	*******	*********	*****

C.3: Case (v): No Rotational Data: use a Morse Inner Wall

This data set illustrates the type of situation discussed in § 2.5, a case for which one has vibrational data but little or no rotational data. As discussed in § 2.5, the program uses the vibrational data to determine Morse parameters \mathfrak{D}_e and β , which are then combined with a read-in value of r_e and used to generate the inner-wall turning points. The regular RKR calculation of Eq. (2) is then used to define the outer wall of the potential. Although the molecular species in this example is a hydride (ArH⁺), for which one might normally expect to use the Kaiser correction, the uncertainty associated with the inner wall makes such niceties pointless for this case.

20 40 1 1 0 1 -1	% IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
'(v) NDE-based potential for Ar-H(+):	Morse Inner Wall Extrapolation'
4 1 2 2 3 1 33.2D0 0.146D0	% NLR ITYPE IZPO IZQO NPO NQO VD XCNO
-0.396754604292D-4 0.456933925968D-5	-0.392256864315D-7
0.414470068478D-2	
1.28066d0	% r_e Morse minimum
0 2 11.1d0	% Kaiser NSV VEXT
-0.4d0 0.2d0 1.6d0	%(1) V1 DV V2
2.0d0 1.0d0 32.d0	%(2) V1 DV V2

Channel-6 output file for Case (v): No Rotational Data: use a Morse Inner Wall

(v) NDE-based potential for Ar-H(+): Morse Inner Wall Extrapolation with Charge= 1 Reduced mass ZMU= 0.98304686014 and constant C_u/ZMU from atomic masses: 39.9625908640 & 1.0078250322(u) ZMU = 17.148347540284 Seek relative quadrature convergence 1.0D-10. Bisect inte performing 16-point Gaussian quadrature in each segment Bisect interval up to 5 times. NDE for Gv is an (NP= 3/NQ= 1) OUTER Pade expansion in (vD-v) with XO(n=4)= 1.4600000D-01 and leading num. and denom. powers 2 & vD= 33.200000 D-G(v=-1/2)= 35609.923120 Numerator coefficients are: -3.967546042920D-05 4.569339259680D-06 -3.922568643150D-08 4.144700684780D-03 Denominator coefficients : NO rotational constants input, so inner wall of potential is Morse function. plus we= 2710.952 & wexe= 61.66771 [cm-1] Req= 1.280660(Angst) Input yields Morse with De= 29793.805 [cm-1] and beta= 1.896347 [1/Angst.] At v00= -0.50000 Gv= 0.0000000 Bv= 10.45573546 $alpha_e = 0.345654121$
 Calculate turning points at the

 -0.40
 -0.20
 0.00
 0.20
 0

 2.00
 3.00
 4.00
 5.00
 6

 13.00
 14.00
 15.00
 16.00
 17

 24.00
 25.00
 26.00
 27.00
 28
 42 v-values 0.80 8.00 19.00 30.00 $1.00 \\ 9.00 \\ 20.00 \\ 31.00$ 0.60 7.00 18.00 29.00 $1.20 \\ 10.00 \\ 21.00 \\ 32.00$ 0.40 1.40 6.00 17.00 28.00 11.00 22.00 12.00 23.00 Resulting Turning Points: E(v) dE(v)/dv B(v) Rmin(v) Rmax(v) NDIV d(RMIN) tst(f) tst(g) C(exp) 270.4791 807.7496 1340.1238 1867.6263 2390.2815 ********* 2698.6344 -0.400 -0.200 0.000 0.200 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 2222222222222 2674.0913 2649.6715 2625.3741 1.20028174081.17923244311.16283377971.3755273493 1.4063390438 1,4325816297 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 2.6D-13 4.0D-14 0.400 2601.1982 2577.1429 10.4557354585 1.1491483678 1.4561922932 2908.1136 3421.1467 3929.4045 10.455735458510.455735458510.455735458510.45573545851,4780549888 0.800 2553.2073 2529.3905 1.1267746500 1.1172895727 1.4986608500 1.5183160588 .9D-14 .3D-14 1.2001.4001.6002505.6914 2482.1091 2458.6426 0.0D+00 0.0D+00 0.0D+00 4432.9107 10.4557354585 1.1086314197 1.5372266954 5.9D-2.6D-1.1006541543 1.0932497144 4931.6888 5425.7621 10.4557354585 10.4557354585 555539312 2.6D-4.4D-14 1.5733625617 16 22 0.0D+00 0.0D+00 2.000 6399.8859 2412.0524 10.4557354585 1.6078561171 4.4D-14 3.000 8754.4466 2297.5257 10.4557354585 1.6896812308 8.7D-15 1.0522616825 delete 25 intermediate lines of output 2.4D-12 38.9271 0.8912739167 29.000 35567.6034 10.4557354585 8.1741833465 0.0D+00 17.9773 6.0350 30.000 31.000 35595.2410 35606.5707 10.4557354585 10.4557354585 0.8911669752 0.8911231541 10.2995968034 14.3470761119 1.1D-12 4.4D-12 0.0D+00 0.0D+00 2 32.000 35609.6222 1.0001 10.4557354585 0.8911113535 25.1220618327 8 1.4D-13 0.0D+00

C.4: Cases (vi) & (vii): MXR Function for G_v With a Pure Dunham or MXR for B_v

These two cases illustrate the data file setup associated with use of an MXR representation for G_v , combined with either a Dunham or an MXR representation for B_v . In the output for both cases we see that there are some convergence problems as $v \to v_{\mathfrak{D}}$ due to significant digit cancellations in the integrand argument $[G_v - G_{v'}]$. This cannot be avoided unless the entire calculation is performed in quadruple precision, but since no real additional physical accuracy would be attained, it would not be worth the trouble to do that. Note, too that both examples use VEXT > 0, which indicates that a prior VEXT = 0 calculation had been used to determine an appropriate value for VEXT for each case.

```
3737+020
                                      % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
'(vi) For Li2(A): MXR function for Gv
                                      & Dunham for Bv'
                                       % LMAXGv
 2.554976991440D+02 -1.591528931916D+00 4.320069610295D-03 -1.297800483407D-04
 5.126092802711D-06 -3.043543008425D-07 9.142950968846D-09 -1.496898654541D-10
 9.980517130870D-13
                                       % VS DVS DLIM
 55.d0 1.d0 9352.11494d0
 3 1 2 2 7 0 113.2817653490D0 2.577D-08 % NLR ITYPE IZPO IZQO NPO NQO VD XCNO
  1.910501922487D-03 -3.893923351925D-04 2.334546248943D-05 -6.987656722521D-07
  1.155836220945D-08 -1.015514433411D-10 3.720613823813D-13
  17
                                       % LMAXBv
  4.974826807719D-01 -5.451871858525D-03 -2.310449795574D-06 9.775126360220D-06
 -2.425290834207D-06 3.831066457326D-07 -4.243945514918D-08 3.342936415566D-09
 -1.887782854700D-10 7.703531741973D-12 -2.287056796063D-13 4.954101341163D-15
 -7.802622660609D-17 8.821305429325D-19 -6.966209130239D-21 3.645524469475D-23
 -1.135472319430D-25 1.593096618270D-28
 1 2
        45.d0
                                        % Kaiser NSV VEXT
  -0.4d0
         0.2d0 1.6d0
                                       %(1) V1 DV V2
         1.0d0 113.d0
                                       %(2) V1 DV V2
   1.d0
 3737+022
                                       % IAN1 IMN1 IAN2 IMN2 CHARGE NDEGv NDEBv
'(vii) For Li2(A): MXR function for both Gv & Bv'
                                       % LMAXGv
  9
 2.554976991440D+02 -1.591528931916D+00 4.320069610295D-03 -1.297800483407D-04
 5.126092802711D-06 -3.043543008425D-07 9.142950968846D-09 -1.496898654541D-10
 9.980517130870D-13
  55.d0 1.d0 9352.11494d0
                                       % VS DVS DLIM
      2 2 7 0 113.2817653490D0 2.577D-08 % NLR ITYPE IZPO IZQO NPO NQO VD XCNO
 3 1
  1.910501922487D-03 -3.893923351925D-04 2.334546248943D-05 -6.987656722521D-07
  1.155836220945D-08 -1.015514433411D-10 3.720613823813D-13
                                       % LMAXBv
  8
  4.974956434974D-01 -5.487758555749D-03 2.648227703650D-05 -1.139866232979D-06
 7.141138262611D-08 -4.445710119333D-09 1.443419023131D-10 -2.497993558364D-12
  1.725383416037D-14
 3 0 0 6 0 4.263D-08
                                       % ITYPB IZP1 IZQ1 NP1 NQ1 XCN1
 2.114415071744D-01 -2.929745145298D-02 1.369881187153D-03 -3.136194459560D-05
  3.563240597730D-07 -1.610153741067D-09
   2
        49.d0
                                       % Kaiser NSV VEXT
 1
  -0.4d0 0.2d0 1.6d0
                                       %(1) V1 DV V2
   1.d0
         1.0d0 114.d0
                                       %(2) V1 DV V2
```

Channel-6 output file for Case (vi): MXR Function for G_v Combined With a Pure Dunham Expansion for B_v

from atomic masses: 7.0160034370 & 7.0160034370(u) Seek relative quadrature convergence 1.0D-10. Bisect interval up to 5 times. performing 16-point Gaussian quadrature in each segment Represent Gv's by Tellinghuisen-type MXR mixed representation: 9'th order Dunham for v .le. VS & NDE for v > VS, with VS= 55.0000 with switching function $F_s = 1/[1 + \exp\{(v-VS)/DVS\}]$ with DVS= 1.0000 and a sympotote energy (dissociation limit) DLIM= 9352.1149 [cm-1] The 9 Dunham Gv expansion coefficients are 2.5549769914D+02 -1.5915289319D+00 4.3200696103D-03 -1.2978004834D-04 5.1260928027D-06 -3.0435430084D-07 9.1429509688D-09 -1.4968986545D-10 9.9805171309D-13 NDE for Gv is an (NP= 7/NQ= 0) OUTER Pade expansion in (vD-v) with X0(n=3)= 2.5770000D-08 and leading num. and denom. powers 2 & vD= 113.281765 D-G(v=-1/2)= 9352.114940 Numerator coefficients are: 1.910501922487D-03 -3.893923351925D-04 2.334546248943D-05 -6.987656722521D-07 1.155836220945D-08 -1.015514433411D-10 3.720613823813D-13 2 The 18 Dunham Bv expansion coefficients are
 4.9748268077D-01
 -5.4518718585D-03
 -2.3104497956D-06
 9.7751263602D-06

 -2.4252908342D-06
 3.8310664573D-07
 -4.2439455149D-08
 3.3429364156D-09

 -1.8877828547D-10
 7.7035317420D-12
 -2.2870567961D-13
 4.9541013412D-15

 -7.8026226606D-17
 8.81213054233D-19
 -6.9662091302D-21
 3.6455244695D-23

 -1.1354723194D-25
 1.5930966183D-28
 Calculate Y00= v00= -0.50027 Gv= 0.00000000 dG/dv= 255.4986 (1/2)d2G/dv2= -1.591529 Bv= 0.49748416 { ==> Req= 3.107983623(A) } At alpha_e = 0.005451872 Above v = 45.000extrapolate inner wall with exponential fitted to last 3 points (& shift RMAX accordingly) Calculate turning points at the 119 v-values 0.60 11.00 22.00 1.00 2.00 3.00 4.00 12.00 13.00 23.00 24.00 14.00 25.00 15.00 26.00 16.00 27.00 Resulting Turning Points: C(exp) Rmax(v) ND] NDIV tst(f) t v E(v) c dE(v)/dv B(v) F Rmin(v) tst(g) ******* d(RMTN) ******** 255.1795 0.4969374800 3.1972365663 -0.400 $\begin{array}{c} 0.4969374800\\ 0.4958471565\\ 0.4947572489\\ 0.4936680686\\ 0.4925798647\\ 0.4914928338\\ 0.4893228659\\ 0.4839253904 \end{array}$ 3.26557344193.31425616353.3548345519-0.200 254.5439 253.9093 8.335775 253.2757 0.200 6.542694 3.39066841103.42329488703.48202765245.6970285.1705964.7148600.400 0.600 252.6431 252.0114 2.8048360631 2.7279076041 1.000 2.000 379.7488 250.7506 628,9293 247.6138 3.6067170425 4.178673 delete 40 intermediate lines of output 0.2412555800 2.0485435822 7.1373528092 0.2324814935 2.0439678278 7.2771489537 0.2234973505 2.0396768355 7.4254977727 0.2143347759 2.0356645222 7.5833046780 0.2050337064 2.0319242402 7.7515239817 2 6.2D-15 1.7D-13 2 3.1D-15 9.6D-14 2 4.9D-15 2.6D-13 2 5.1D-15 0.0D+00 2 3.6D-15 0.0D+00 102.0111 96.9039 91.7289 2.575810 2.616591 2.518026 43.000 8062.0241 8161.4881 8255.8092 8344.9314 8428.8260 44.000 45.000 0.0000480590.00002078000.000054243386.5106 81.2792 76.0703 70.9239 7.5833046780 7.7515239817 7.9311397917 8.1231389712 46.000 47.000 2.518026 2.518026 2.0284485494 2.0252290145 2.0222560548 2 1.4D-14 0.0D+00 2 9.4D-15 0.0D+00 2 2.3D-14 0.0D+00 8507.4973 8580.9874 0.1956415038 0.1862115850 48.000 2.518026 49.000 2.518026 0.0001093876 65.8830 0.1768016272 50.000 8649.3802 8.3284771833 2.518026 0.0001860396 delete 40 intermediate lines of output 0.0043654236 1.9930209958 52.7914090047 0.0043678797 1.9930011274 57.0230330908 0.0081788619 1.9929848672 61.8154981423 0.0211356489 1.9929717016 67.2840618135 16 2.9D-12 0.0D+00 16 1.9D-13 0.0D+00 16 1.2D-11 0.0D+00 16 4.5D-12 0.0D+00 9349.9208 0.5433 2.518026 91.000 0.0024228047 92.000 93.000 94.000 9350.4146 9350.8188 9351.1461 0.4468 0.3637 0.2927 2.518020 2.518026 2.518026 2.518026 $\begin{array}{c} 0.0020614480 \\ 0.0344422787 \end{array}$ 0.1662930847 95.000 96.000 97.000 9351.4078 9351.6143 9351.7746 0.05324591570.12212496710.257351026716 7.9D-12 0.0D+00 16 9.0D-12 0.0D+00 16 2.3D-12 0.0D+00 16 2.3D-12 0.0D+00 2.518026 2.518026 2.518026 2.518026 0.2325 0.1819 $\begin{array}{c} 1.9929611712 \\ 1.9929528655 \end{array}$ 73.5769464307 80.8871496406 0.4821753416 0.9560124562 1.9929464185 89.4694692744 0.1399 1.4016999224 16 2.3D-12 0.0D+00 16 3.2D-11 0.0D+00 16 8.8D-11 0.0D+00 16 7.5D-12 0.0D+00 8 7.7D-11 0.0D+00 16 7.6D-11 0.0D+00 16 7.6D-11 0.0D+00 2.518026 2.518026 2.518026 2.518026 2.518026 2.518026 98.000 99.000 9351.8967 9351.9879 0.1055 0.5067819300 0.9455438950 1.6929584252 1.8477777085 $\begin{array}{c} 1.6886134888\\ 2.9081747045\\ 4.8572547202 \end{array}$ 9352.0542 100.000 0.0558 1.9233261857 101.000 9352.1012 9352.1334 0.0389 1.9593707443 1.9766194784 0.0261 4.8572547202 1.9929319852 169.2827714802 16 7.6D-11 0.0D+00 2.518026 t NDIV= 16 tst(f)/(previous)= 2.0D-10/1.3D-10 tst(g)/(previous)= 0.0D+00/0.0D+00 0.0168 7.9015366849 1.9929311319 200.0186179979 16 2.0D-10 0.0D+00 2.518026 t NDIV= 16 tst(f)/(previous)= 5.1D-10/1.3D-10 tst(g)/(previous)= 0.0D+00/0.0D+00 0.0103 12.5617284908 1.9929305947 241.0345672508 16 5.1D-10 0.0D+00 2.518026 t NDIV= 32 tst(f)/(previous)= 7.4D-10/1.9D-10 tst(g)/(previous)= 0.0D+00/0.0D+00 0.0059 19.5694488836 1.9929302748 297.6128692134 32 7.4D-10 0.0D+00 2.518026 t NDIV= 32 tst(f)/(previous)= 1.3D-09/4.5D-10 tst(g)/(previous)= 0.0D+00/0.0D+00 0.0032 29.9402950697 1.9929300969 378.9163489298 32 1.3D-09 0.0D+00 2.518026 At NDIV= 16 0.0168 7 At NDIV= 16 *** STOP ITERATION: 103.000 1,9849610307 9352.1546 *** STOP ITERATION: 104.000 9352.1680 *** STOP ITERATION: 1.9890365597 At. 105.000 9352.1759 *** STOP ITERATION: At 1.9910408190 106.000 9352.1803 1 9920274486

*** CAUTION: 32 interval incomplete convergence: tst(f) & tst(g)= 5.0D-10 0.0D+00 whil	e TOLER= 1.0D-10
107.000 9352.1826 0.0015 45.0685981563 1.9929300060 501.9793805852 32 5.0D-10	0.0D+00 2.518026 1.9925102054
108.000 9352.1836 0.0006 66.8493803343 1.992929965 701.4484689892 16 4.4D-09	0.0D+00 2.518026 1.9927428817
*** SIDP IIERATION: At NDIV= 16 ts(1)/(previous)= 1.2D=08/3.5D=09 tst(g)/(previous)= 109.000 9352.1840 0.0002 97.8342235426 1.99292994821056.9200299326 16 1.2D=08	0.0D+00 2.518026 1.9928519824
*** SIDP IIERATION: At NDIV= 16 tst(f)/(previous)= 8.5D-08/6.7D-09 tst(g)/(previou 110.000 9352.1842 0.0001 141.4291794992 1.99292994311786.3832793429 16 8.5D-08	0.0D+00/0.0D+00 0.0D+00 2.518026 1.9929008166
*** SIOP IIERATION: At NDIV= 16 tst(f)/(previous)= 3.9D=07/1.9D=07 tst(g)/(previou 111.000 9352.1842 0.0000 202.1445232863 1.99292994193679.6496067163 16 3.9D=07	s)= 0.0D+00/0.0D+00 0.0D+00 2.518026 1.9929209996
*** SIOP IIERATION: At NDIV= 32 tst(f)/(previous)= 2.4D-05/3.0D-06 tst(g)/(previou 112.000 9352.1842 0.0000 285.9081211397 1.9929299418***********************************	0.0D+00/0.0D+00 0.0D+00 2.518026 1.9929281646
*** STOP ITERATION: At NDIV= 16 tst(f)/(previous)= 4.8D-02/1.3D-02 tst(g)/(previou 113.000 9352.1842 0.0000 400.4564902950 1.9929299418***********************************	s)= 0.0D+00/0.0D+00 0.0D+00 2.518026 1.9929298887
***************************************	***************************************
For v .GE. 45.00 inner wall extrapolated as: V(R) = -520.9673 + 0.14922925D+07*e	xp(- 2.51802614*R)

Channel-6 output file for Case (vii): MXR Functions for G_v and for B_v

stant C_u/ZMU = 4.805479175537 7.0160034370(u) 800171850 and constant 7.0160034370 & 7.016 from atomic masses: Seek relative quadrature convergence 1.0D-10. Bisect interperforming 16-point Gaussian quadrature in each segment Bisect interval up to 5 times. Represent Gv's by Tellinghuisen-type MXR mixed representation: 9'th order Dunham for v .1e. VS & NDE for v > VS, with switching function $F_s = 1/[1 + \exp\{(v-VS)/DVS\}]$ with VS= 55.0000 with DVS= 1.0000 sympotote energy (dissociation limit) DLIM= 9352.1149 [cm-1] and a The 9 Dunham Gv expansion coefficients are 2.5549769914D+02 -1.5915289319D+00 4.3200696103D-03 -1.2978004834D-04 5.1260928027D-06 -3.0435430084D-07 9.1429509688D-09 -1.4968986545D-10 9.9805171309D-13 NDE for Gv is an (NP= 7/NQ= 0) OUTER Pade expansion in (vD-v) with XO(n=3)= 2.5770000D-08 and leading num. and denom. powers 2 & vD= 113.281765 D-G(v=-1/2)= 9352.114940 Numerator coefficients are: 1.910501922487D-03 -3.893923351925D-04 2.334546248943D-05 -6.987656722521D-07 1.155836220945D-08 -1.015514433411D-10 3.720613823813D-13 Represent Bv's by Tellinghuisen-type MXR mixed representation: 8'th order Dunham for v .le. VS & NDE for v > VS, with VS= 55.0000 The 9 Dunham Bv expansion coefficients are 4.9749564350D-01 -5.487758557D-03 2.6482277036D-05 -1.1398662330D-06 7.1411382626D-08 -4.4457101193D-09 1.4434190231D-10 -2.4979935584D-12 1.7253834160D-14 NDE for Bv is an (NP= 6/NQ= 0) Exponential expansion in (vD-v) with X1(n=3)= 4.2630000D-08 and leading num. and denom. powers 0 & Numerator coefficients are: 2.114415071744D-01 -2.929745145298D-02 1.369881187153D-03 -3.136194459560D-05 3.563240597730D-07 -1.610153741067D-09 0 Calculate Gv= 0.00000000 dG/dv= 255.4986 (1/2)d2G/dv2= -1.591529 Bv= 0.49749719 { ==> Req= 3.107942903(A) } At v00= -0.50028 alpha_e = 0.005487759 Above v = 49.000 extrapolate inner wall with exponential fitted to last 3 points (& shift RMAX accordingly) Calculate turning points at the 119 v-values -0.40 - 0.20 0.00 0.20 0.40 0.60 1.00 2.00 3.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00 72.00 73.00 74.00 75.00 76.00 77.00 78.00 79.00 80.00 83.00 84.00 85.00 86.00 87.00 88.00 89.00 90.00 91.00 94.00 95.00 96.00 97.00 98.00 99.00 100.00 101.00 102.00 105.00 106.00 107.00 108.00 109.00 110.00 111.00 112.00 113.004.00 15.00 26.00 37.00 48.00 59.00 70.005.0016.00 27.00 38.00 49.00 60.00 71.00 81.00 92.00 92.00 82.00 93.00 93.00 103.00 104.00 Resulting Turning Points: E(v) *********** 25.6061 76.5784 127.4237 dE(v)/dv *********** 255.1795 254.5439 253.9093 B(v) ************** 0.4969471313 0.4958516691 0.4947582466 77 -0.400 -0.200 0.000

C(exp)

8.337848

d(RMTN)

$0.200 \\ 0.400 \\ 0.600 \\ 1.000 \\ 2.000$	178.1422 228.7341 279.1995 379.7518 628.9323	253.2757 252.6431 252.0114 250.7506 247.6138	$\begin{array}{c} 0.4936668143\\ 0.4925773248\\ 0.4914897331\\ 0.4893200731\\ 0.4839263400 \end{array}$	2.8940940095 2.8677217408 2.8445720595 2.8048380459 2.7279073455	3.3548294739 3.3906675968 3.4232969217 3.4820322503 3.6067188159	2 6.8D-15 2 2.4D-15 2 3.9D-15 2 2.9D-15 2 6.0D-15	6.1D-15 2.2D-15 3.1D-15 2.4D-15 6.0D-15	6.543548 5.696890 5.169723 4.713391 4.176945	
			delete 40 i	ntermediate lir	les of output				
$\begin{array}{c} 43.000\\ 44.000\\ 45.000\\ 46.000\\ 47.000\\ 47.000\\ 48.000\\ 49.000\\ 50.000\\ 51.000\end{array}$	$\begin{array}{c} 8062.0271\\ 8161.4911\\ 8255.8122\\ 8344.9344\\ 8428.8290\\ 8507.5003\\ 8580.9904\\ 8649.3832\\ 8712.8062\\ \end{array}$	$\begin{array}{c} 102.0111\\ 96.9039\\ 91.7289\\ 86.5106\\ 81.2792\\ 76.0703\\ 70.9239\\ 65.8830\\ 60.9915 \end{array}$	$\begin{array}{c} 0.2412589816\\ 0.2325109768\\ 0.2235482561\\ 0.2143966102\\ 0.2050918461\\ 0.1956805490\\ 0.1862199849\\ 0.1767764544\\ 0.1674211497 \end{array}$	2.0486530117 2.0440507973 2.0397276757 2.0356793188 2.0319004009 2.0283841176 2.0251216503 2.0221045150 2.0193228327	$\begin{array}{c} 7.1374628062\\ 7.2772324873\\ 7.4255491738\\ 7.5833200325\\ 7.7515006974\\ 7.9310759125\\ 8.1230321571\\ 8.3283261915\\ 8.5478462775\\ \end{array}$	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	8.2D-15 4.0D-15 7.3D-15 2.7D-15 1.9D-14 4.4D-15 5.2D-14 0.0D+00 0.0D+00	$\begin{array}{c} 2.082971\\ 2.100804\\ 2.121922\\ 2.143082\\ 2.153211\\ 2.124768\\ 2.004384\\ 2.004384\\ 2.004384\\ \end{array}$	0.0000026832 0.0000111121
	••••	• • • • • • • • • • • • • •	delete 40 i	ntermediate lir	les of output	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·		
92.000 93.000 94.000 95.000 95.000 97.000 98.000 99.000 100.000 101.000 *** CAU	9350.4176 9350.8218 9351.1490 9351.4108 9351.6173 9351.6173 9351.8997 9351.9908 9352.0572 9352.1042 VIION: 32 inte	0.4468 0.3637 0.2927 0.2325 0.1819 0.1055 0.0778 0.055 0.0778 0.0589 0.0389	0.0048343858 0.0042447604 0.0037078430 0.0032181566 0.00237709805 0.0023624202 0.001894625 0.0016500049 0.0013428443 0.0010676020 plete convergen	1.9921703263 1.992167709 1.9921459287 1.9921373769 1.9921307390 1.9921256803 1.9921219057 1.9921191571 1.9921172111 1.9921172111 1.921172111	57.0222195579 61.8146841289 67.2832474095 73.5761317144 80.8863346776 89.4686541216 99.6647594827 111.9409936979 126.9468856490 145.6084375683 sst(g)= 1.1D-10	16 5.2D-12 16 5.8D-12 16 1.1D-12 16 9.6D-12 16 5.8D-12 16 2.3D-11 16 3.9D-11 16 1.5D-12 32 4.9D-11 8 9.3D-11 0.0D+00 whi	0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 0.0D+00 Le TOLER=	2.004384 2.004384 2.004384 2.004384 2.004384 2.004384 2.004384 2.004384 2.004384 1.0D-10	$\begin{array}{c} 0.0132731113\\ 0.0161634256\\ 0.0194191930\\ 0.0230387210\\ 0.0230387210\\ 0.0313061514\\ 0.0358874930\\ 0.0406948615\\ 0.0456501274\\ 0.0506550656\end{array}$
102.000 103.000	9352.1364 9352.1576	0.0261	0.0008245605 0.0006143927	1.9921158781 1.9921149995	169.2819558979 200.0178024208	32 1.1D-10 8 1.3D-11	0.0D+00 0.0D+00	2.004384 2.004384	0.0555923816 0.0603292862
*** SIL 104.000	9352.1709	At NDIV= 0.0103 A+ NDIV=	8 tst(f)/(p 0.0004377745	1.9921144464	241.0337516165	t(g)/(previou 8 3.8D-10	(1S) = 0.0D + 00 (0.0D + 00) = 0.0D + 00	2.004384	0.0647244890
105.000 106.000 *** STC	9352.1789 9352.1833 P ITERATION:	0.0059 0.0032 At NDIV=	0.0002949042 0.0001849888 16 tst(f)/(p	1.9921141171 1.9921139338 previous)= 4.9D-	297.6120536865 378.9155337676 09/2.8D-09 ts	16 3.3D-10 32 7.2D-11 t(g)/(previou	0.0D+00 0.0D+00 1s)= 0.0D+	2.004384 2.004384 00/0.0D+00	0.0686393116 0.0719530322
107.000 *** STC	9352.1856 P ITERATION:	0.0015 At NDIV=	0.0001058115 32 tst(f)/(r	1.9921138403 previous)= 1.9D-	501.9785661328 08/2.5D-09 ts	16 4.9D-09 t(g)/(previou	0.0D+00 1s)= 0.0D+	2.004384 00/0.0D+00	0.0745814353
108.000 *** STC	9352.1866 P ITERATION:	0.0006 At NDIV=	0.0000535269 16 tst(f)/(p	1.9921137975 previous)= 8.4D-	701.4476459811 09/7.9D-09 ts	32 1.9D-08 t(g)/(previou	0.0D+00 1s)= 0.0D+	2.004384 00/0.0D+00	0.0764957264
109.000 *** STC	9352.1870 P ITERATION:	0.0002 At. NDTV=	0.0000228278 16 tst(f)/(r	1.99211378071	056.9192226031	$\frac{16}{16}$ 8.4D-09	0.0D+00 (15) = 0.0D+	2.004384 00/0.0D+00	0.0777366891
110.000 *** CAT	9352.1871	0.0001	0.0000075505	1.99211377541	786.3822265910 st(g) = 8 9D-08	16 5.8D-08 0 0D+00 whi	0.0D+00	2.004384 1 0D-10	0.0784169147
111.000 *** STC	9352.1872	0.0000 At NDTV=	0.0000016323 32 tst(f)/(r	1.99211377423	679.6484935413	32 8.9D-08	0.0D+00	2.004384	0.0787037388
112.000 *** STC	9352.1872	0.0000 At NDTV=	0.0000001442 16 tst(f)/(r	1.9921137741*		32 2.5D-05	0.0D+00	2.004384	0.0787795066
113.000	9352.1872	0.0000	0.000000003	1.9921137741*	***************************************	16 6.1D-02	0.0D+00	2.004384	0.0787927269
For v ******	7 .GE. 49.00 ************	inner wall *********	extrapolated a	us: V(R) = -	2694.1259 + 0.6	5309251D+06*(********	exp(- 2.0	0438358*R) *********	*****

Appendix F. Derivation of the RKR Equations

The first formal derivation of what is now known as the "RKR" method was due to O. Klein [3], and a version of his derivation is outlined here. Starting from the first-order JWKB or Bohr-Sommerfeld quantization condition

$$v + \frac{1}{2} = \frac{1}{\pi} \sqrt{\frac{2\mu}{\hbar^2}} \int_{r_1}^{r_2} [E - V(r)]^{1/2} dr \quad .$$
(23)

For the purpose of this derivation, it is notationally convenient to start by replacing v by v' and E by E'. We then take the derivative of this expression with respect to energy E', and next divide the range of integration into two parts to separate the repulsive and attractive regions:

$$\frac{dv'}{dE'} = \frac{1}{2\pi} \sqrt{\frac{2\mu}{\hbar^2}} \left\{ \int_{r_1}^{r_e} \frac{dr}{[E' - V(r)]^{1/2}} + \int_{r_e}^{r_2} \frac{dr}{[E' - V(r)]^{1/2}} \right\} \quad .$$
(24)

For a well-behaved single-minimum potential, there is a unique monotonic relationship between the distance variable r and the value of the potential energy function, u = V(r) on each of the intervals $[r_1, r_e]$ and $[r_e, r_2]$. We may therefore re-write Eq. (24) with u replacing r as the independent variable in the two integrals:

$$\frac{dv'}{dE'} = \frac{1}{2\pi} \sqrt{\frac{2\mu}{\hbar^2}} \left\{ \int_{E'}^0 \frac{1}{[E'-u]^{1/2}} \frac{dr_1(u)}{du} \, du + \int_0^{E'} \frac{1}{[E'-u]^{1/2}} \frac{dr_2(u)}{du} \, du \right\}$$

$$= \frac{1}{2\pi} \sqrt{\frac{2\mu}{\hbar^2}} \int_0^{E'} \left(\frac{dr_2(u)}{du} - \frac{dr_1(u)}{du} \right) \frac{du}{[E'-u]^{1/2}} \quad .$$
(25)

We now introduce a mathematical gimmick (sometimes called an Abelian transformation[3]), which involves premultiplying both sides of Eq. (25) by the factor $dE'/[E-E']^{1/2}$ and integrating E' from 0 to E, to obtain

$$\int_{0}^{E} \frac{(dv'/dE') dE'}{[E-E']^{1/2}} = \int_{v_{\min}}^{v(E)} \frac{dv'}{[E(v) - E(v')]^{1/2}}$$

$$= \frac{1}{2\pi} \sqrt{\frac{2\mu}{\hbar^2}} \int_{0}^{E} dE' \left\{ \int_{0}^{E'} \left(\frac{dr_2(u)}{du} - \frac{dr_1(u)}{du} \right) \frac{du}{[(E-E')(E'-u)]^{1/2}} \right\} ,$$
(26)

in which $v_{\min} = v(E=0)$ is the (non-integer) effective vibrational quantum number index associated with the potential minimum. If we then change the order of the double integration, and utilize the mathematical identity

$$\int_{a}^{b} \frac{dx}{[(b-x)(x-a)]^{1/2}} = \pi \quad , \tag{27}$$

we obtain

$$\int_{v_{\min}}^{v(E)} \frac{dv'}{[E(v) - E(v')]^{1/2}} = \frac{1}{2\pi} \sqrt{\frac{2\mu}{\hbar^2}} \int_0^E du \left\{ \left(\frac{dr_2(u)}{du} - \frac{dr_1(u)}{du} \right) \int_u^E \frac{dE'}{[(E - E')(E' - u)]^{1/2}} \right\}$$
$$= \frac{1}{2} \sqrt{\frac{2\mu}{\hbar^2}} \left\{ \int_0^E \frac{dr_2(u)}{du} \, du \, - \, \int_0^E \frac{dr_1(u)}{du} \, du \right\}$$
$$= \frac{1}{2} \sqrt{\frac{2\mu}{\hbar^2}} \left\{ \int_{r_e}^{r_2(E)} dr \, - \, \int_{r_e}^{r_1(E)} dr \right\}$$
$$= \frac{1}{2} \sqrt{\frac{2\mu}{\hbar^2}} \left[r_e(E(v)) - r_1(E(v)) \right] \quad . \tag{28}$$

Rearrangement of this expression yields the first, or "vibrational", RKR equation

$$r_2(v) - r_1(v) = 2\sqrt{\frac{\hbar^2}{2\mu}} \int_{v_{\min}}^v \frac{dv'}{\left[E(v) - E(v')\right]^{1/2}} \equiv 2f \quad .$$
⁽²⁹⁾

The derivation of the second, or "rotational", RKR equation proceeds in the same way, except that we first need to perform some manipulations to obtain the appropriate starting equation. The starting point is the recognition that for a rotating molecule (i.e., one with J > 0), the effective centrifugally-distorted potential appearing in the quantization condition of Eq. (23) is

$$V_J(r) = V(r) + \frac{\hbar^2}{2\mu} \frac{[J(J+1)]}{r^2} \quad , \tag{30}$$

so that the quantization condition may be re-written as

$$v(E,J) + \frac{1}{2} = \frac{1}{\pi} \sqrt{\frac{2\mu}{\hbar^2}} \int_{r_1}^{r_2} \left[E - V(r) - \frac{\hbar^2}{2\mu} \frac{[J(J+1)]}{r^2} \right]^{1/2} dr \quad .$$
(31)

For a given value of J, Eq. (31) tells us that there exists a unique mapping between v and E, and the chain rule of calculus tell us that in this case, for any function $\mathfrak{F}(E, J)$,

$$\left(\frac{\partial \mathfrak{F}(E,J)}{\partial [J(J+1)]}\right)_{E} = \left(\frac{\partial E}{\partial [J(J+1)]}\right)_{v} \left(\frac{\partial \mathfrak{F}}{\partial E}\right)_{J} \quad . \tag{32}$$

Application of this chain rule relationship to Eq. (31) then yields

$$\left(\frac{\partial v}{\partial [J(J+1)]}\right)_{E} = \left(\frac{\partial E}{\partial [J(J+1)]}\right)_{v} \left(\frac{\partial v}{\partial E}\right)_{J}$$
(33)

$$= -\frac{1}{2\pi} \sqrt{\frac{\hbar^2}{2\mu}} \int_{r_1}^{r_2} \frac{dr}{r^2 \left[E - V(r) - \frac{\hbar^2}{2\mu} \frac{[J(J+1)]}{r^2}\right]^{1/2}} \quad . \tag{34}$$

From the standard definition of the inertial rotational constant, we know that $\frac{\partial E(v,J)}{\partial [J(J+1)]}\Big|_{J=0} \equiv B_v, \text{ so for } J=0, \text{ Eq. (33) becomes}$ $B_v \frac{dv}{dE} = -\frac{1}{2\pi} \sqrt{\frac{\hbar^2}{2\mu}} \int_{r_1}^{r_2} \frac{dr}{r^2 [E-V(r)]^{1/2}},$ (35)

in which the partial derivative has been replaced by a normal derivative, since when J is fixed (at J=0) there in only one independent variable.

Equation (35) provides a starting point that is the precise analog of Eq. (24) in the derivation of the RKR "f integral" result of Eq. (29). Proceeding precisely as before, to (i) replace variable names E and v with E' and v', respectively, (ii) split the range of integration into two parts at r_e , (iii) change the variable of integration from r to u = V(r), (iv) multiply by $dE'/(E - E')^{1/2}$ and integrate E' from 0 to E, (v) change the order of integration and apply the identity of Eq. (27), and (vi) rearrange the result appropriately, then yields the second, or "rotational", RKR equation:

$$\frac{1}{r_1(v)} - \frac{1}{r_2(v)} = 2\sqrt{\frac{2\mu}{\hbar^2}} \int_{v_{\min}}^{v} \frac{B_{v'} \, dv'}{\left[E(v) - E(v')\right]^{1/2}} \equiv 2g \quad . \tag{36}$$

Combining Eqs. (29) and (36) then yields the final turning point expressions of Eqs. (5) and (6). Thus, for any case in which we have smooth functions that accurately describe the v-dependence of the vibrational energies G_v and inertial rotational constants B_v , Eqs. (29) and (29)-(5) may be used to generate the potential energy function in a pointwise manner.