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A. Non-Weighted Linear Least Squares Fits

A least squares fit seeks to find the values of a set of M parameters pj (for j = 1 − M ) which will optimize
the agreement between a set of N experimental data yo(i) (for i = 1 − N ) and calculated values for these data
yc({pj}; i) ( i = 1 − N ) generated from a model defined by the M parameters. A linear least squares problem is
one in which the calculated function values defined by the model are linearly dependent on the parameters of
interest. When this is true, the function defining the model can be written

yc(i) ≡ yc({pj}; i) =
j =1
Σ
M

pj φj(i) (1)

where φj(i) ( j = 1 − M ) are known functions which do not depend on the values of the parameters {pj} .
Another way of stating this definition is to say that that a least squares problem is linear if the partial derivatives

φj(i) ≡
I
J
L ∂pj

∂yc({pj}; i)hhhhhhhhhh
M
J
O{pk}, k≠j

(2)

have absolutely no dependence on the pj’s.

A simple spectroscopic example of a linear least squares problem is that of fitting the frequencies of the R-
lines of a diatomic molecule microwave spectrum to the expression

yc(i) = νc(i) = F (Ji +1) − F (Ji) = B 2(Ji +1) − D 4(Ji +1)3 (3)

Here the data are labeled by the values of the rotational quantum number J= Ji , the two parameters are the "iner-
tial" rotational constant B= p1 and the leading centrifugal distortion constant D = p2 , and the partial derivatives
of the predicted transition frequencies νc(i) with respect to these parameters,

φ1(i) = φ1(Ji) = 2(Ji +1) and φ2(i) = φ2(Ji) = 4(Ji +1)3 (4)

have no dependence on the values of the parameters of this model.

The above sample problem becomes non-linear if one modifies the model by introducing the Kratzer rela-
tion for the centrifugal distortion constant, D = 4 B 3/ω2 . In this case the model becomes

νc(i) = B 2(Ji+1) − [ 16 B 3/ω2 ] (Ji +1)3 (5)

and the parameters are now the inertial rotational constant B and the vibrational frequency ω . This expression is
not linearly dependent on B or ω , since the derivatives

∂B

∂νc(i)hhhhhh = φ1(i) = 2(Ji+1) − 48 (B /ω)2 (Ji+1)3 (6)

and

∂ω
∂νc(i)hhhhhh = φ2(i) = 32 (B /ω)3 (Ji+1)3 (7)

do depend on the values of these parameters. Of course this is a trivial type of non-linear problem, in that a
unique solution for it may be determined by manipulating the parameters of the related linear problem of Eq. (3).
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However, it serves to illustrate the meaning of "non-linearity" in this context. In this section, however, our atten-
tion will be restricted to linear least squares models such as that of Eq. (3).

If all of the data are weighted equally, the least squares fitting problem is concerned with determining the set
of parameter values for which the sum of squares of deviations,

SSD ≡ SSD({pj}) =
i =1
Σ
N I

Lyo(i) − yc({pj}; i) M
O
2

=
i =1
Σ
N I

J
L
yo(i) −

j =1
Σ
M

pj φj(i)
M
J
O

2

, (8)

is a minimum. As discussed in standard texts and references,1,2 this involves requiring the partial derivatives of
SSD with respect to each of the model’s parameters pk to simultaneously equal zero:

∂pk

∂ SSDhhhhhh = 0 = − 2
i =1
Σ
N I

Lyo(i) − yc({pj}; i) M
O ∂pk

∂yc({pj}; i)hhhhhhhhhh = − 2
i =1
Σ
N I

J
L
yo(i) −

j =1
Σ
M

pj φj(i)
M
J
O
φk(i) (9)

Rearranging these expressions yields a set of M linear equations (one for each of k = 1 to M ) in the M unknown
parameters {pj} :

i =1
Σ
N

[ yo(i) φk(i) ] =
j =1
Σ
M

pj

I
J
Li =1
Σ
N

[ φj(i) φk(i) ]
M
J
O

(10)

Solving the above set of linear equations is of course a simple matter of linear algebra, and devising a highly
stable computational algorithm for doing so is sensibly left to numerical computation experts. However, when
such an algorithm is properly packaged, a user may exploit it to solve any linear least squares problem of interest.
The only input information required is the experimental data and a knowledge of the partial derivatives of each
calculated data point yc({pj}; i) with respect to each parameter of the model, pk . If properly set up, the output
will provide (in addition to the desired parameter values {pj} ) a range of statistical information regarding the
parameters and the fit (see §E). The Fortran subroutines LLSQF and LLSQFVL described below (and partially
listed in the Appendix) have been designed precisely for this purpose, and may be obtained from the author on
request. While a variety of equivalent packages may be available to a user, these routines are particularly robust
and stable, and it is convenient to use their capabilities to illustrate the discussion of other features of least squares
analyses. Thus, we precede our discussion of non-linear fits and other matters by a short outline of the charac-
teristics of LLSQF and LLSQFVL .

The presentation to this point gives us the ability to use a packaged routine such as LLSQF to perform a
least squares fit of experimental data to any function expressed in the linear form of Eq. (1). While we have expli-
citly considered only the case of fits to equally-weighted data, the generalization to the case of non-equal data
uncertainties is quite straightforward. However, since those considerations are the same for both linear and non-
linear fits, their discussion is postponed to §D.

B. Capabilities, Use and Source of the Routines LLSQF & LLSQFVL

For a least squares fit to any linear model written in the form of Eq. (1), a user of LLSQF must write a cal-
ling program which will read in the experimental data and prepare the partial derivative array

DYDP(i,k) =
I
J
L ∂pk

∂yc({pj}; i)hhhhhhhhhh
M
J
O{pl},l≠k

= φk(i) (11)

which is dimensioned in the calling program as DYDP( MXDATA, MXPARM ) . The only other information
required as input is the set of integers specifying the number of data NDATA = N and the number of parameters
NPARM = M , a linear array containing the experimental data YO(i) , and a linear array YU(i) containing the
uncertainties in each of these experimental observables. If all of the data are weighted equally, the values of
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YU(i) should all be set equal to unity; for other cases, see the discussion in §D below.

For a several-parameter fit to very large numbers of data (say N >∼ 103 − 106 ), the requisite partial derivative
array DYDP may be sufficiently large that the associated computer memory requirements make the computation
unwieldy. For this case an alternate version of this routine, called LLSQFVL , has been developed. It’s argu-
ment list is the same as that of LLSQF except that array DYDP is omitted and the requisite partial derivatives
are calculated for one datum at at time by a user-prepared subroutine called DYIDPJ (see Appendix).

On return from a call to LLSQF (or LLSQFVL), in addition to the recommended values of the least squares
fitted parameters, PV( j) = pj ( j = 1 − M ), one is provided with the correlated 95% confidence limit uncertainty in
each parameter PU( j) (see §E), with the "truncation tolerance" or precision to which each parameter should be
quoted PS( j) (see §F), with the standard error of the fit, SERR = √dddddddddddddSSD / (N − M) , and with the "correlation
matrix" CM which is obtained on normalizing the variance-covariance matrix. This last quantity contains infor-
mation regarding the degree of interparameter correlation, and may be used to compute the variance or uncer-
tainty in any quantity calculated from the parameters determined by the fit (see §E below).

A copy of LLSQF will be returned to anyone who sends a request for it by electronic mail to:
leroy@theochem.uwaterloo.ca . Alternately, persons with an account on an INTERNET-connected computer
may pick up copies for themselves using standard anonymous ftp protocols. In the latter case, after issuing the
command ftp theochem.uwaterloo.ca , the response to the userid prompt should be anonymous and the response
to the password prompt should be the person’s e-mail address. Once a successful connection is made, the desired
files may be copied from subdirectory pub /leroy . For the record, I would appreciate being notified (by e-mail to
leroy@theochem.uwaterloo.ca) about any files/programs picked up in this way.

C. Non-Linear Least Squares Fits

A linear least squares fit has exactly one solution, consisting of a single unique set of {PV( j)} values and
their uncertainties {PU( j)}. For a non-linear problem, however, there may in general be a number of sets of
PV( j)’s for which the SSD function has local minima, and there exists no a priori way of knowing which of
them defines the absolute minimum. When considering the results of any non-linear least squares fit, this fact
must be kept in mind. In practise, however, many non-linear fitting problems appear to have only one solution,
and they are often at least "locally" linear, so that converged fits may be obtained by performing an iterative series
of linear fits until convergence is achieved. While more sophisticated iteration schemes have been developed,2

only the simple "locally linear" approach is discussed below, as it most clearly illustrates the essential methodol-
ogy, and is the easiest to program.

The defining property of non-linear least squares fits is the fact that the partial derivatives of Eq. (2) do
depend on the values of the parameters, so no analog of the set of linear equations of Eq. (10) may be set up
without having some initial trial estimates of the pj’s to use in calculating the partial derivatives {φj(i)} . How-
ever, if plausible initial trial parameter values are somehow obtained, one may proceed in the following manner.
Since (linear or not) the values of yc({pj}; i) calculated from the model have some explicit dependence on the
parameter values {pj} , one may always expand yc as a multidimensional Taylor series about those initial trial
values. In particular, we may express the values of yc({pj}; i) associated with the optimum (but not yet known!)
parameter values {pj(opt)} in terms of a Taylor series expansion about our initial trial values {pj(trial)} :

yc = yc({pj(trial)}; i) +
j =1
Σ
M

∂pj

∂yc(i)hhhhhh ∆pj +
2
1hh

j =1
Σ
M

l =1
Σ
M

∂pj ∂p1

∂2yc(i)hhhhhhh ∆pj ∆pl + . . . (12)

where ∆pj = pj(opt) − pj(trial) are the corrections to the initial trial parameter values, which we wish to deter-
mine.
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Substituting Eq. (12) into the definition of SSD and retaining only terms linear in the parameter corrections
yields the equation:

SSD = SSD ({∆pj}) =
i
Σ

I
J
L
[ yo(i) − yc({pj(trial)}, i) ] −

j =1
Σ
M

∆pj φj(i)
M
J
O

2

(13)

This expression has exactly the same form as the last version of Eq. (8), except that yo(i) is replaced by
[ yo(i) − yc({pj(trial)}, i) ] and pj is replaced by ∆pj . By analogy with the linear least squares problem, we
wish to find values of the ∆pj’s for which the partial derivatives of SSD with respect to further parameter
changes are all simultaneously zero. This requirement leads to a set of M linear equations (for k = 1 to M) in the
M unknowns ∆pj :

i =1
Σ
N

[ yo(i) − yc({pj(trial)}, i) ] φk(i) =
j =1
Σ
M

∆pj

I
J
Li =1
Σ
N

[ φj(i) φk(i) ]
M
J
O

(14)

As in the linear least squares problem, this set of equations may be solved using a standard package such as
LLSQF to yield estimates of the changes ∆pj in the parameter values required to optimize the model. In this
case, however, the input array YO(i) consists of the differences [ yo(i) − yc({pj(trial)}, i) ] defined by the current
trial parameter values, rather than the experimental observables yo(i) themselves, and the quantities P( j)
returned by the subroutine are the incremental parameter changes ∆pj rather than the parameters themselves. At
the same time, the parameter uncertainties PU( j) and truncation tolerances PS( j) retain their usual significance,
since the uncertainty and precision associated with a parameter change from some known starting value is
equivalent to the uncertainty in and required precision of the parameter value itself.

Because of the approximations associated with neglect of the higher-order terms in Eq. (12) (i.e., because
the partial derivatives φj(i) change with the parameter values), the changes {∆pj} yielded by a single application
of this procedure will only be approximate, so it is necessary to repeat it iteratively until these changes converge
to zero. The overall procedure then consists of the following steps:

(i) Read in the data and generate some initial set of trial values for the parameters defining the model.

(ii) Prepare the arrays YO(i) = [ yo(i) − yc({pj(trial)}, i) ] and DYDP(i, j) = φj({pj}; i) , and call the
linear least squares routine LLSQF .

(iii) Update the parameter values: pj(new) = pj(trial) + ∆pj , and test for convergence. If the changes are
"negligible" (see below), stop; otherwise return to step (ii).

A Simple Example

Consider the problem of determining the values of parameters a, b and c by fitting a set of equally-weighted
data to the model function

yc({pj}; i) = yc(a,b,c ; xi) = a + b e − c xi (16)

For any given set of trial values of the parameters a , b and c , one can readily determine the partial derivatives:

DYDP(i, 1) = φ1(i) = ∂yc(i) / ∂a = 1 (17)

DYDP(i, 2) = φ2(i) = ∂yc(i) / ∂b = e − c xi (18)

DYDP(i, 3) = φ3(i) = ∂yc(i) / ∂c = − xi b e − c xi (19)

The fact that (two of ) these expressions contain values of the parameters underlines the fact that fitting data to
Eq. (16) is a non-linear least squares problem. Moreover, unlike the model of Eq. (5), it cannot be made
equivalent to some linear model.
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To fit a set of data to Eq. (16), it is necessary to first determine a set of trial parameters to use in generating
the partial derivatives of Eqs. (17)-(19). When this is done and the DYDP(i, j) array prepared, a call to LLSQF
would then yield proposed changes to the three parameters: ∆a , ∆b and ∆c . These quantities may then be
added to the original trial parameters, and if the chosen convergence criterion is not satisfied, the fit continued by
using these updated parameters in step (ii) of the procedure outlined above.

Obtaining Initial Trial Parameter Values

It important to realize that there is no general way of determining a "reasonable" set of trial parameter
values with which to initialize an iterative non-linear least squares fit. For each model and data set, a user must
utilize their own physical and/or mathematical intuition, while making use of any physical constraints which may
be known for the problem. In some cases, values of some parameters in the model may be fixed at zero (or some
other values) while a preliminary series of iterations optimizes initial estimates of others, and then the full fit is
allowed to proceed with all parameters set free. However, this is an area in which the best guide is experience.

Testing for Convergence

One can readily think of a number of criteria which might be used to test for convergence of the iterative
procedure described above. For example, one may require that the absolute | ∆pj | or relative | ∆pj/pj | parame-
ter changes be smaller than some specified criterion, or that the relative changes in the standard error of the fit
(SERR) from one iteration to the next be less than some chosen tolerance. Another possibility is to require that
the magnitude of the change in each parameter | ∆pj | be less than some specified fraction of the parameter
uncertainty PU( j) . However, these criteria overlook the essential requirement for the utility of parameter values
determined from a fit. It is that: quantities calculated from the converged parameters should agree with the input
data to within a small fraction of the uncertainty of the fit. With this criterion in mind, a more selective (and usu-
ally more stringent) criterion may readily be defined.

The "sensitivity" of a particular datum to a given parameter value is defined by the partial derivative of
Eq. (2). For small ∆pj , the change in yc(i) caused by this parameter change is δyc(i, j) ∼∼ φj(i) ∆pj . A reason-
able convergence criterion would therefore be to require that for each parameter j , the root mean square value of
δyc(i, j) be smaller than some chosen fraction f of the overall standard error of the fit. With (following Watson,3

see §F) f ≡ 0.1/M , this condition may be restated as the requirement that for each parameter pj , the magnitude of
the change ∆pj be smaller than the predicted "parameter sensitivity" (as returned by LLSQF and LLSQFVL):

PS( j) =
M
0.1hhhh SERR /

I
J
Li =1
Σ
N

φj(i)
2/ N

M
J
O

1⁄2
(15)

This is the test which I recommend be used in step (iii) above.

One apparent difficulty with this convergence criterion may arise in highly-correlated or many-parameter
fits where numerical noise due to finite computer precision may prevent this limit from actually being reached.
However, one flag for such behaviour would be an increase in maxj | ∆pj/PU( j) | from one cycle to the next. If
this occurs and (say) max j | ∆pj/PU( j) | < 0.1 , physical convergence has been achieved and the iteration pro-
cedure can simply be stopped.

D. Weighting in Linear and Non-Linear Least Squares Fits

If all of the data used in a fit are weighted equally and the data uncertainties YU(i) input to subroutine
LLSQF set equal to unity, the standard error of the fit SERR has the same units as the data values, and may
readily be related to the precision of those observables. However, if the data set being fitted includes different
types of physical quantities (e.g., spectroscopic line positions and intensities), one must approach the problem
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differently. In a formal treatment, this would involve introduction of a diagonal weight matrix whose non-zero
elements are the inverse squares of the uncertainties in the data, w (i) = 1/YU(i)2 , and minimization of SSD of
Eq. (8) would be replaced by minimization of the χ2 function:

χ2 = χ2({pj}) =
i =1
Σ
N

w (i) I
Lyo(i) − yc({pj}; i) M

O
2

=
i =1
Σ
N I

L[ yo(i) − yc({pj}; i) ] / YU(i) M
O
2

(20)

In practise, however, all of the changes associated with the use of non-unit uncertainties are accounted for inter-
nally inside LLSQF and LLSQFVL if the user causes the array YU(i) to contain the uncertainties in the indivi-
dual experimental data. In this case, the quantity SERR returned from LLSQF is actually the dimensionless

quantity √ddddddddddχ2/ (N − M) , and in the calculation of the quantities PS( j) inside LLSQF (see Eq. (15)), the actual
partial derivatives φj(i) are replaced by the scaled quantities φj(i)/YU(i) . Thus, while the matrix formulation of
the least squares problem with non-equal weights may appear complicated,1 the practical treatment of such prob-
lems is quite straightforward.

E. The Correlation Matrix and Uncertainties the Parameters and in Calculated Properties

The partial derivative array DYDP(i, j) of Eq. (11) has N rows, one for each experimental datum, and M
columns, one for each parameter. The variance-covariance matrix V is then defined (for the case of unit weights
YU(i) = 1 ) as the inverse of the matrix obtained on multiplying DYDP by its transpose:

V = I
LDYDP t .DYDP M

O
− 1

(21)

For the more general case of non-equal weights, V is defined by the fact that the elements of its inverse V− 1 are
weighted sums of products of the individual partial derivatives:

(V− 1)j,k =
i =1
Σ
N

w (i) φj(i) φk(i) (22)

The "correlation matrix" CM returned by LLSQF is then defined as the matrix obtained on "normalizing" the
variance-covariance matrix by dividing each row and column by the square root of the associated diagonal ele-
ments:

(CM)i, j = Vi, j / √dddddddVi,i Vj, j (23)

Of course, all of this manipulation is automatically done inside LLSQF (or its equivalent), so that all a user need
consider is the meaning and use of CM .

The uncertainty associated with a parameter value yielded by a least squares fit has two sources. The first is
the direct "sensitivity" of the data to this parameter, information contained in the partial derivatives φj(i) . This is
a measure of how much SSD or χ2 would increase if that parameter was changed while all others were held
fixed. The second source of uncertainty is "interparameter correlation". It reflects the fact that if the effect of a
given change in (say) parameter-k on the calculated properties {yc({pj}; i)} (and hence on SSD ) may be par-
tially compensated for by a correlated change in one or more of the other parameter(s), the overall range of uncer-
tainty associated with parameter-k could be much larger than that due only to its sensitivity. Of course the param-
eter uncertainties PU( k) returned by LLSQF take account of both these sources of error. They are calculated as

PU( k) = f 95(N − M) SERR √ddddVk,k (24)

where f 95(N − M) is the 95% student t-value for a fit with N − M degrees of freedom.

One use of the correlation matrix is in indicating which parameters are highly correlated with one another.
In general, diagonal elements of CM are precisely equal to unity while the off-diagonal elements (CM)j,k have
magnitudes ( < 1 ) which indicate the degree to which the effect on SSD of changes in a particular pj can be
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compensated for by changes in pk (and vise versa). If | (CM)j,k | is close to unity (say ≥ 0.95 ), it means that
parameters j and k are "highly correlated", and that much of their uncertainty is due to this correlation. An exam-
ple of a real correlation matrix, obtained from a combined-isotope fit of infrared data for the Van der Waals
molecules H2- and D2-Kr to a model potential energy surface, is shown below [from J. Chem. Phys. 86, 837
(1987)].

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
parameter ε00 Re

00 β ε01 Re
01 ε20 Re

20 ε21 C8
40

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ε00 1.00
Re

00 -0.91 1.00
β -0.98 0.97 1.00
ε01 0.68 -0.67 -0.72 1.00
Re

01 -0.95 0.94 0.96 -0.51 1.00
ε20 0.24 -0.24 -0.24 -0.23 -0.38 1.00
Re

20 -0.66 0.62 0.66 -0.78 0.52 0.56 1.00
ε21 -0.40 0.40 0.39 -0.18 0.36 0.06 0.34 1.00
C8

40 0.01 0.01 0.01 -0.09 -0.03 0.20 0.16 -0.08 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

The main quantitative use of the correlation matrix is in generating the proper correlated statistical uncer-
tainty in any quantity calculated from the parameters yielded by a fit. In particular, if a property F ({pj}) may be
calculated from the fitted parameters {pj} , its squared 95% confidence limit uncertainty may be calculated from
the expression

u (F)2 = PD t .CM .PD (25)

where PD is an M × 1 column matrix of elements PD(j) = PU( j) [ ∂F / ∂pj ] , for j = 1 to M . Thus, simply
combining the results of the fit with the partial derivatives of the property of interest with respect to the fit param-
eters yields proper estimates of the uncertainty in the predicted property. For example, when dealing with spec-
troscopic data, this would allow one to calculate the real uncertainties in line positions for very high J’s, beyond
the range of the input data, predicted using molecular constants determined from a fit to the model of Eq. (3).

F. Rounding of Parameters Determined from Least Squares Fits

For the sake of simplicity, one always wishes to minimize the number of significant digits to which each
parameter determined from a fit must be reported. In deciding how to effect this rounding, it is tempting to use
the values of the parameter uncertainties {PU( j)} as a guide, and to round each parameter off at, say, 10% or 1%
of this value. However, this neglects the fact that most of this uncertainty is usually due to interparameter correla-
tion, and hence that even such statistically insignificant changes as (say) 0.01 × PU( j) may substantially affect
the predictions yielded by the model.3 In contrast, the direct "sensitivity" of the data to each parameter provides
a much more useful measure of the precision to which it must be reported.

This problem has in fact already been addressed in the context of of our discussion of how to best test for
convergence of an iterative non-linear least squares fit. The definition of the "parameter sensitivities" {PS( j)} of
Eq. (15) shows that these quantities provide reasonable bounds on the truncation errors which may be tolerated
when rounding off the fitted parameters. Thus, following the recommendation of Watson,3 it is proposed that the
PS( j) values of Eq. (15) be used to define the precision to which parameters obtained from both linear and non-
linear fits should be reported, as well as in testing for convergence of the latter.
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G. Determining Derivatives-By-Differences for Use in Least-Squares Fits

As discussed above, performing linear or non-linear least squares fits requires a knowledge of the partial
derivatives of the predicted values of the observables with respect to each of the parameters of the model. It is
always best to generate these partial derivatives analytically or from closed form expressions. However, some-
times this seems impossible or very inconvenient, and it is necessary to generate the required derivatives from a
numerical first-difference expression:

∂p
∂ fhhh ∼∼

2 . ∆p
f (p + ∆p) − f (p − ∆p)hhhhhhhhhhhhhhhhhhh (26)

In this case, two competing considerations must be taken into account when choosing the parameter stepsize ∆p .

(i) Numerical analysis tells us that the smaller this increment, the better the estimate of the derivative. However,
no further improvement is achieved when the step becomes so small that the error term is smaller than the
computer precision limit.

(ii) While consideration-(i) favours ever smaller parameter increments, finite computer precision means that if
∆p becomes too small the difference in the numerator on the right hand side of Eq. (26) loses all of its
significant digits, and the resulting derivative becomes meaningless.

We wish to delineate how these two considerations may be optimally reconciled.

With regard to consideration-(i), a Taylor series expansion for the function f (p) yields:

f (p + ∆p) = f (p) +
∂p
∂ fhhh ∆p +

∂p 2

∂2 fhhhh
2!

(∆p)2
hhhhhh +

∂p 3

∂3 fhhhh
3!

(∆p)3
hhhhhh + . . . (27)

f (p − ∆p) = f (p) −
∂p
∂ fhhh ∆p +

∂p 2

∂2 fhhhh
2!

(∆p)2
hhhhhh −

∂p 3

∂3 fhhhh
3!

(∆p)3
hhhhhh + . . . (28)

As a result, the estimate of the partial derivative provided by Eq. (26) becomes

2 . ∆p
f (p + ∆p) − f (p − ∆p)hhhhhhhhhhhhhhhhhhh =

∂p
∂ fhhh +

∂p 3

∂3 fhhhh
3!

(∆p)2
hhhhhh + . . . =

∂p
∂ fhhh

R
J
Q
1 +

I
J
L ∂ f / ∂p
∂3 f / ∂p 3
hhhhhhhh

M
J
O 3!

(∆p)2
hhhhhh + . . .

H
J
P

(29)

In practical numerical work, the first difference approximation for this derivative becomes essentially exact when
the second term in square brackets on the right hand side of Eq. (29) becomes smaller than the machine precision
constant ε (typically ε ∼∼ 10 − 16 for REAL*8 arithmetic on common computers). In other words, obtaining
optimal accuracy using the first difference approximation of Eq. (26) requires that

∆p < (6 ε)
1⁄2 |

∂3 f / ∂p 3

∂ f / ∂phhhhhhhh |
1⁄2

(30)

With regard to consideration-(ii), we wish to avoid an excessive loss of significant digits on taking the
difference in the numerator of Eq. (26). In other words, we wish to ensure that this difference of approximately
{2 . ∆p . (∂ f/∂p)} is a significant fraction of the magnitude of the function value f itself. In particular, requiring

that no more than half of the machine precision significant digits be lost on taking this difference means that:

∆p > ε1⁄2 | f (p) / 2 (∂ f/∂p) | (31)

In attempting to reconcile Eqs. (30) and (31), we note that for some types of algebraic functions,

|
∂3 f/∂p 3

∂ f/∂phhhhhhhh |
1⁄2

∼∼ |
∂2 f/∂p 2

∂ f/∂phhhhhhhh | ∼∼ | f (p) / (∂ f/∂p) | (32)

As a result, an optimal ballance between considerations (i) and (ii) will often be achieved by setting
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∆p ∼∼ ε1⁄2 | f(p) / (∂ f/∂p) | or ε1⁄2 |
∂2 f/∂p 2

∂ f/∂phhhhhhhh | (33)

In the context of a least squares fit, one would usually wish to replace the values of f(p) and its derivatives in
these expressions by values averaged over the data set.
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APPENDIX: Calling Sequence and Partial Listings for LLSQF & LLSQFVL
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c***********************************************************************
SUBROUTINE LLSQF(NDATA,NPARM,MXDATA,MXPARM,YO,YU,DYDP,DY,P,PU,PS,
1 CM,SERR)

c** Program for performing linear least squares fits using orthogonal
c decomposition of the Design (partial derivative) matrix.
c** This version of the program is designed for the data sets of modest
c size where it is convenient to generate and store the complete
c partial derivative matrix prior to calling LLSQF. If this is not the
c case, subroutine version LLSQFVL, which generates this partial
c derivative array one row at a time through calls to a user-supplied
c subroutine, should be used.
c
c** On entry: NDATA is the number of data to be fitted (.le.MXDATA)
c NPARM the number of parameters to be varied (.le.MXPARM)
c If NPARM.le.0 , simply calculate the (weighted RMS
c deviation)=SERR from the input YO(i) & YU(i)’s
c MXDATA & MXPARM are array dimension parameters (see below)
c Internal array sizes currently assume MXPARM .le. 60
c YO(i) are the NDATA ’observed’ data; for iterative
c non-linear fits these are: [Y(obs,i) - Y(trial,i)]
c YU(i) are the uncertainties in these YO(i) values
c DYDP(i,j) is the partial derivative array dYO(i)/dPV(j)
c
c** On Exit: PV(j) are the fitted parameter values; for iterative
c non-linear fits these are the parameter changes
c PU(j) are 95% confidence limit uncertainties in the PV(j)’s
c PS(j) are ’parameter sensitivities’ for the PV(j)’s, defined
c such that the RMS displacement of predicted data due to
c rounding off parameter-j by PS(j) is .le. SERR/10*NPARM
c SERR is the standard error of the fit
c DY(i) is the array of differences [YO(i) - Ycalc(i)]
c CM(j,k) is the correlation matrix obtained by normalizing
c variance/covariance matrix: CM(j,k) = CM(j,k)/SQRT[CM(j,j)*CM(k,k)]
c** The squared 95% confidence limit uncertainty in property F({PV(j)})
c defined in terms of the fitted parameters {PV(j)} is (where the
c L.H.S. involves [row]*[matrix]*[column] multiplication):
c [D(F)]ˆ2 = [PU(1)*dF/dPV(1), PU(2)*dF/dPV(2), ...]*[CM(j,k)]*
c [PU(2)*dF/dPV(1), PU(2)*dF/dPV(2), ...]
c** Externally dimension: YO, YU and DY .ge. NDATA (say as MXDATA),
c P, PU and PS .ge. NPARM (say as MXPARM),
c DYDP with column length MXDATA and row length .ge. NPARM
c CM as square matrix with column length MXPARM
c Authors: Michael Dulick & Robert J. Le Roy, Department of Chemistry
c U. of Waterloo, Waterloo, Ontario N2L 3G1. Version of: 30/08/93
c***********************************************************************

INTEGER I,J,K,L,M,IDF,NDATA,MXDATA,NPARM,MXPARM
REAL*8 YO(NDATA), YU(NDATA), DY(NDATA), PV(NPARM), PU(NPARM),
1 PS(NPARM), DYDP(MXDATA,NPARM), CM(MXPARM,MXPARM), SERR,
2 PX(60), F95(10), TFACT, S, U
DATA F95/12.7062D0,4.3027D0,3.1824D0,2.7764D0,2.5706D0,2.4469D0,
1 2.3646D0,2.3060D0,2.2622D0,2.2281D0/

c
. . .
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c***********************************************************************
SUBROUTINE LLSQFVL(NDATA,NPARM,MXDATA,MXPARM,YO,YU,DY,P,PU,PS,
1 CM,SERR)

c** Program for performing linear least squares fits using orthogonal
c decomposition of the Design (partial derivative) matrix.
c** This version of the program is designed for the case of very large
c data sets when it would be inconvenient (or impossible) to store the
c complete partial derivative matrix at one time, so it is generated
c row-by-row in calls to USER-SUPPLIED subroutine DYIDPJ. For
c problems involving data set of modest size, it may be more convenient
c to use program version LLSQF, which assumes that the complete partial
c derivative array is prepared and brought in as input.
c
c** On entry: NDATA is the number of data to be fitted (.le.MXDATA)
c NPARM the number of parameters to be varied (.le.MXPARM)
c If NPARM.le.0 , simply calculate the (weighted RMS
c deviation)=SERR from the input YO(i) & YU(i)’s
c MXDATA & MXPARM are array dimension parameters (see below)
c Internal array sizes currently assume MXPARM .le. 60
c YO(i) are the NDATA ’observed’ data; for iterative
c non-linear fits these are: [Y(obs,i) - Y(trial,i)]
c YU(i) are the uncertainties in these YO(i) values
c
c** On Exit: PV(j) are the fitted parameter values; for iterative
c non-linear fits these are the parameter changes
c PU(j) are 95% confidence limit uncertainties in the PV(j)’s
c PS(j) are ’parameter sensitivities’ for the PV(j)’s, defined
c such that the RMS displacement of predicted data due to
c rounding off parameter-j by PS(j) is .le. SERR/10*NPARM
c SERR is the standard error of the fit
c DY(i) is the array of differences [YO(i) - Ycalc(i)]
c CM(j,k) is the correlation matrix obtained by normalizing
c variance/covariance matrix: CM(j,k) = CM(j,k)/SQRT[CM(j,j)*CM(k,k)]
c** The squared 95% confidence limit uncertainty in property F({PV(j)})
c defined in terms of the fitted parameters {PV(j)} is (where the
c L.H.S. involves [row]*[matrix]*[column] multiplication):
c [D(F)]ˆ2 = [PU(1)*dF/dPV(1), PU(2)*dF/dPV(2), ...]*[CM(j,k)]*
c [PU(2)*dF/dPV(1), PU(2)*dF/dPV(2), ...]
c** Externally dimension: YO, YU and DY .ge. NDATA (say as MXDATA),
c P, PU and PS .ge. NPARM (say as MXPARM),
c CM as square matrix with column length MXPARM
c Authors: Michael Dulick & Robert J. Le Roy, Department of Chemistry
c U. of Waterloo, Waterloo, Ontario N2L 3G1. Version of: 30/08/93
c***********************************************************************

INTEGER I,J,K,L,M,IDF,NDATA,MXDATA,NPARM,MXPARM
REAL*8 YO(NDATA), YU(NDATA), DY(NDATA), PV(NPARM), PU(NPARM),
1 PS(NPARM),CM(MXPARM,MXPARM), SERR,
2 PX(60), F95(10), TFACT, S, U, Z1
DATA F95/12.7062D0,4.3027D0,3.1824D0,2.7764D0,2.5706D0,2.4469D0,
1 2.3646D0,2.3060D0,2.2622D0,2.2281D0/,Z1/1.d0/

c
. . .


